當前位置: 首頁>>代碼示例>>Java>>正文


Java Utils類代碼示例

本文整理匯總了Java中weka.core.Utils的典型用法代碼示例。如果您正苦於以下問題:Java Utils類的具體用法?Java Utils怎麽用?Java Utils使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


Utils類屬於weka.core包,在下文中一共展示了Utils類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: WekaMatchingRule

import weka.core.Utils; //導入依賴的package包/類
/**
 * Create a MatchingRule, which can be trained using the Weka library for
 * identity resolution.
 * 
 * @param finalThreshold
 *            determines the confidence level, which needs to be exceeded by
 *            the classifier, so that it can classify a record as match.
 * 
 * @param classifierName
 *            Has the name of a specific classifier from the Weka library.
 * 
 * @param parameters
 *            Hold the parameters to tune the classifier.
 */

public WekaMatchingRule(double finalThreshold, String classifierName, String parameters[]) {
	super(finalThreshold);

	this.parameters = parameters;

	// create classifier
	try {
		this.classifier = (Classifier) Utils.forName(Classifier.class, classifierName, parameters);
	} catch (Exception e) {
		e.printStackTrace();
	}
	// create list for comparators
	this.comparators = new LinkedList<>();
}
 
開發者ID:olehmberg,項目名稱:winter,代碼行數:30,代碼來源:WekaMatchingRule.java

示例2: classifySentence

import weka.core.Utils; //導入依賴的package包/類
public SentenceType classifySentence(Sentence sentence) {
	SpeechActsClassifier.Features features = speechActsClassifier.classifyFeatures(sentence);

	Instance inst = new DenseInstance(6);
	inst.setDataset(dataSet);

	inst.setValue(0, features.getSentenceLength());
	inst.setValue(1, features.getNumberOfNouns());
	inst.setValue(2, (features.isEndingInNounOrAdjective() ? 1 : 0));
	inst.setValue(3, (features.isBeginningInVerb() ? 1 : 0));
	inst.setValue(4, features.getCountOfWhMarkers());
	inst.setValue(5, Utils.missingValue());

	try {
		return SentenceType.valueOf(classifier.classifyInstance(inst));
	} catch (Exception e) {
		throw new RuntimeException("Can't classify");
	}
}
 
開發者ID:igr,項目名稱:parlo,代碼行數:20,代碼來源:SentenceClassifier.java

示例3: classifyQuestion

import weka.core.Utils; //導入依賴的package包/類
public QuestionType classifyQuestion(Sentence sentence) {
	if (!sentence.isQuestion()) {
		return QuestionType.NA;
	}

	QuestionTypeClassifier.Features features = questionTypeClassifier.classifyFeatures(sentence);

	Instance inst = new DenseInstance(5);
	inst.setDataset(dataSet);

	inst.setValue(0, features.getWhWord());
	inst.setValue(1, features.getWhWordPos());
	inst.setValue(2, features.getPosOfNext());
	inst.setValue(3, features.getRootPos());
	inst.setValue(4, Utils.missingValue());

	try {
		int ndx = (int) classifier.classifyInstance(inst);
		 return QuestionType.valueOf(ndx);
	} catch (Exception e) {
		throw new RuntimeException("Not classified");
	}
}
 
開發者ID:igr,項目名稱:parlo,代碼行數:24,代碼來源:QuestionClassifier.java

示例4: getClustererAssignmentsPlotInstances

import weka.core.Utils; //導入依賴的package包/類
/**
 * Returns an instance of the class used for generating plot instances for
 * displaying the cluster assignments.
 * 
 * @return an instance of the class
 */
public static ClustererAssignmentsPlotInstances getClustererAssignmentsPlotInstances() {
  ClustererAssignmentsPlotInstances result;
  String classname;
  String[] options;

  try {
    options = Utils.splitOptions(get("ClustererAssignmentsPlotInstances",
      "weka.gui.explorer.ClustererAssignmentsPlotInstances"));
    classname = options[0];
    options[0] = "";
    result = (ClustererAssignmentsPlotInstances) Utils.forName(
      ClustererAssignmentsPlotInstances.class, classname, options);
  } catch (Exception e) {
    e.printStackTrace();
    result = new ClustererAssignmentsPlotInstances();
  }

  return result;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:26,代碼來源:ExplorerDefaults.java

示例5: chooseRandomIndexBasedOnProportions

import weka.core.Utils; //導入依賴的package包/類
/**
 * returns a random index based on the given proportions
 * 
 * @param proportionArray the proportions
 * @param random the random number generator to use
 * @return the random index
 */
protected int chooseRandomIndexBasedOnProportions(double[] proportionArray,
  Random random) {

  double probSum;
  double val;
  int index;
  double sum;

  probSum = Utils.sum(proportionArray);
  val = random.nextDouble() * probSum;
  index = 0;
  sum = 0.0;

  while ((sum <= val) && (index < proportionArray.length)) {
    sum += proportionArray[index++];
  }

  return index - 1;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:27,代碼來源:RandomRBF.java

示例6: toString

import weka.core.Utils; //導入依賴的package包/類
/**
 * Returns description of the bagged classifier.
 *
 * @return description of the bagged classifier as a string
 */
@Override
public String toString() {
  
  if (m_Classifiers == null) {
    return "Bagging: No model built yet.";
  }
  StringBuffer text = new StringBuffer();
  text.append("All the base classifiers: \n\n");
  for (int i = 0; i < m_Classifiers.length; i++)
    text.append(m_Classifiers[i].toString() + "\n\n");
  
  if (m_CalcOutOfBag) {
    text.append("Out of bag error: "
  + Utils.doubleToString(m_OutOfBagError, 4)
  + "\n\n");
  }

  return text.toString();
}
 
開發者ID:seqcode,項目名稱:seqcode-core,代碼行數:25,代碼來源:AttributeBagging.java

示例7: chooseLastIndex

import weka.core.Utils; //導入依賴的package包/類
/**
 * Choose last index (ie. choose rule).
 */
public final int chooseLastIndex() {

  int minIndex = 0;
  double estimated, min = Double.MAX_VALUE;

  if (!m_isLeaf) {
    for (int i = 0; i < m_sons.length; i++) {
      if (son(i) != null) {
        if (Utils.grOrEq(localModel().distribution().perBag(i), m_minNumObj)) {
          estimated = son(i).getSizeOfBranch();
          if (Utils.sm(estimated, min)) {
            min = estimated;
            minIndex = i;
          }
        }
      }
    }
  }

  return minIndex;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:25,代碼來源:ClassifierDecList.java

示例8: getAreaUnderLearningCurve

import weka.core.Utils; //導入依賴的package包/類
/**
 * Calculates the area under the learning curve (ALC).
 *
 * @param ds
 *            an array of values
 * @param xDelta
 *            The step
 * 
 * @return The area under learning curve
 */
public static double getAreaUnderLearningCurve(double[] ds, double xDelta) {

	final int n = ds.length;

	if (n == 0) {
		return Double.NaN;
	}

	double area = 0;

	double total = 0;

	for (int i = n - 2; i >= 0; i--) {
		total += xDelta;
		area += (ds[i] * xDelta);
	}

	if (area == 0) {
		return Utils.missingValue();
	}

	return area / total;
}
 
開發者ID:ogreyesp,項目名稱:JCLAL,代碼行數:34,代碼來源:LearningCurveUtility.java

示例9: splitEnt

import weka.core.Utils; //導入依賴的package包/類
/**
 * Help method for computing the split entropy.
 */
private final double splitEnt(Distribution bags, double totalnoInst) {

  double returnValue = 0;
  double noUnknown;
  int i;

  noUnknown = totalnoInst - bags.total();
  if (Utils.gr(bags.total(), 0)) {
    for (i = 0; i < bags.numBags(); i++) {
      returnValue = returnValue - lnFunc(bags.perBag(i));
    }
    returnValue = returnValue - lnFunc(noUnknown);
    returnValue = returnValue + lnFunc(totalnoInst);
  }
  return returnValue / ContingencyTables.log2;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:20,代碼來源:GainRatioSplitCrit.java

示例10: toStringKey

import weka.core.Utils; //導入依賴的package包/類
/**
 * returns a key for all the col names, for better readability if
 * the names got cut off.
 * 
 * @return		the key
 */
public String toStringKey() {
  String          result;
  int             i;

  result = "Key,\n";
  for (i = 0; i < getColCount(); i++) {
    if (getColHidden(i))
      continue;

    result +=   LEFT_PARENTHESES + (i+1) + RIGHT_PARENTHESES
              + "," + Utils.quote(removeFilterName(m_ColNames[i])) + "\n";
  }

  return result;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:22,代碼來源:ResultMatrixCSV.java

示例11: priorEntropy

import weka.core.Utils; //導入依賴的package包/類
/**
 * Calculate the entropy of the prior distribution.
 * 
 * @return the entropy of the prior distribution
 * @throws Exception if the class is not nominal
 */
public final double priorEntropy() throws Exception {

  if (!m_ClassIsNominal) {
    throw new Exception("Can't compute entropy of class prior: "
      + "class numeric!");
  }

  if (m_NoPriors) {
    return Double.NaN;
  }

  double entropy = 0;
  for (int i = 0; i < m_NumClasses; i++) {
    entropy -=
      m_ClassPriors[i] / m_ClassPriorsSum
        * Utils.log2(m_ClassPriors[i] / m_ClassPriorsSum);
  }
  return entropy;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:26,代碼來源:Evaluation.java

示例12: distributionForInstance

import weka.core.Utils; //導入依賴的package包/類
/**                                                                                                             
 * Classifies the given test instance. The instance has to belong to a                                          
 * dataset when it's being classified.                                                          
 *                                                                                                              
 * @param inst the instance to be classified                                                                
 * @return the predicted most likely class for the instance or                                                  
 * Utils.missingValue() if no prediction is made                                                             
 * @exception Exception if an error occurred during the prediction                                              
 */
public double[] distributionForInstance(Instance inst) throws Exception {
  if (!m_initialized) {
    mapToMiningSchema(inst.dataset());
  }
  double[] preds = null;
  
  if (m_miningSchema.getFieldsAsInstances().classAttribute().isNumeric()) {
    preds = new double[1];
  } else {
    preds = new double[m_miningSchema.getFieldsAsInstances().classAttribute().numValues()];
  }
  
  double[] incoming = m_fieldsMap.instanceToSchema(inst, m_miningSchema);
  
  preds = m_ruleSet.score(incoming, 
      m_miningSchema.getFieldsAsInstances().classAttribute());
  
  if (m_miningSchema.getFieldsAsInstances().classAttribute().isNominal()) {
    Utils.normalize(preds);
  }
  
  return preds;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:33,代碼來源:RuleSetModel.java

示例13: setup

import weka.core.Utils; //導入依賴的package包/類
@Override
public void setup(Context context) throws IOException {
  m_task = new CSVToARFFHeaderReduceTask();

  Configuration conf = context.getConfiguration();
  String taskOpts =
    conf.get(CSVToArffHeaderHadoopMapper.CSV_TO_ARFF_HEADER_MAP_TASK_OPTIONS);
  if (taskOpts != null && taskOpts.length() > 0) {
    try {
      String[] options = Utils.splitOptions(taskOpts);

      m_estimateQuantiles = Utils.getFlag("compute-quartiles", options);

    } catch (Exception ex) {
      throw new IOException(ex);
    }
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:19,代碼來源:CSVToArffHeaderHadoopReducer.java

示例14: setT2T1BasedOnStdDev

import weka.core.Utils; //導入依賴的package包/類
/**
 * Pretty hokey heuristic to try and set t2 distance automatically based on
 * standard deviation
 * 
 * @param trainingBatch the training instances
 * @throws Exception if a problem occurs
 */
protected void setT2T1BasedOnStdDev(Instances trainingBatch) throws Exception {
  double normalizedStdDevSum = 0;

  for (int i = 0; i < trainingBatch.numAttributes(); i++) {
    if (trainingBatch.attribute(i).isNominal()) {
      normalizedStdDevSum += 0.25;
    } else if (trainingBatch.attribute(i).isNumeric()) {
      AttributeStats stats = trainingBatch.attributeStats(i);
      if (trainingBatch.numInstances() - stats.missingCount > 2) {
        double stdDev = stats.numericStats.stdDev;
        double min = stats.numericStats.min;
        double max = stats.numericStats.max;
        if (!Utils.isMissingValue(stdDev) && max - min > 0) {
          stdDev = 0.5 * stdDev / (max - min);
          normalizedStdDevSum += stdDev;
        }
      }
    }
  }

  normalizedStdDevSum = Math.sqrt(normalizedStdDevSum);
  if (normalizedStdDevSum > 0) {
    m_t2 = normalizedStdDevSum;
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:33,代碼來源:Canopy.java

示例15: getOptions

import weka.core.Utils; //導入依賴的package包/類
/**
 * Gets the current settings of the datagenerator RDG1. Removing of
 * blacklisted options has to be done in the derived class, that defines the
 * blacklist-entry.
 * 
 * @return an array of strings suitable for passing to setOptions
 * @see #removeBlacklist(String[])
 */
@Override
public String[] getOptions() {
  Vector<String> result = new Vector<String>();

  // to avoid endless loop
  if (!m_CreatingRelationName) {
    result.add("-r");
    result.add(Utils.quote(getRelationNameToUse()));
  }

  if (getDebug()) {
    result.add("-d");
  }

  result.add("-S");
  result.add("" + getSeed());

  return result.toArray(new String[result.size()]);
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:28,代碼來源:DataGenerator.java


注:本文中的weka.core.Utils類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。