本文整理匯總了Java中weka.core.Utils.eq方法的典型用法代碼示例。如果您正苦於以下問題:Java Utils.eq方法的具體用法?Java Utils.eq怎麽用?Java Utils.eq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類weka.core.Utils
的用法示例。
在下文中一共展示了Utils.eq方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: errorsForTree
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Computes error estimate for tree.
*/
private double errorsForTree() throws Exception {
if (m_isLeaf) {
return errorsForLeaf();
} else {
double error = 0;
for (int i = 0; i < m_sons.length; i++) {
if (Utils.eq(son(i).localModel().distribution().total(), 0)) {
error += m_test.perBag(i)
- m_test.perClassPerBag(i, localModel().distribution().maxClass());
} else {
error += ((PruneableDecList) son(i)).errorsForTree();
}
}
return error;
}
}
示例2: splitCritValue
import weka.core.Utils; //導入方法依賴的package包/類
/**
* This method computes the information gain in the same way C4.5 does.
*
* @param bags the distribution
* @param totalNoInst weight of ALL instances
* @param oldEnt entropy with respect to "no-split"-model.
*/
public final double splitCritValue(Distribution bags, double totalNoInst,
double oldEnt) {
double numerator;
double noUnknown;
double unknownRate;
noUnknown = totalNoInst - bags.total();
unknownRate = noUnknown / totalNoInst;
numerator = (oldEnt - newEnt(bags));
numerator = (1 - unknownRate) * numerator;
// Splits with no gain are useless.
if (Utils.eq(numerator, 0)) {
return 0;
}
return numerator / bags.total();
}
示例3: evaluate
import weka.core.Utils; //導入方法依賴的package包/類
@Override
boolean evaluate(Instance inst, int lhsAttIndex, String rhsOperand,
double numericOperand, Pattern regexPattern, boolean rhsIsAttribute,
int rhsAttIndex) {
if (rhsIsAttribute) {
if (inst.isMissing(lhsAttIndex) && inst.isMissing(rhsAttIndex)) {
return true;
}
if (inst.isMissing(lhsAttIndex) || inst.isMissing(rhsAttIndex)) {
return false;
}
return Utils.eq(inst.value(lhsAttIndex), inst.value(rhsAttIndex));
}
if (inst.isMissing(lhsAttIndex)) {
return false;
}
return (Utils.eq(inst.value(lhsAttIndex), numericOperand));
}
示例4: addValue
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Adds a value to the density estimator.
*
* @param value the value to add
* @param weight the weight of the value
*/
public void addValue(double value, double weight) {
// Do we need to add value at all?
if (!Utils.eq(weight, 0)) {
// Invalidate current model
m_MixtureModel = null;
// Do we need to expand the arrays?
if (m_NumValues == m_Values.length) {
double[] newWeights = new double[2 * m_NumValues];
double[] newValues = new double[2 * m_NumValues];
System.arraycopy(m_Values, 0, newValues, 0, m_NumValues);
System.arraycopy(m_Weights, 0, newWeights, 0, m_NumValues);
m_Values = newValues;
m_Weights = newWeights;
}
// Add values
m_Values[m_NumValues] = value;
m_Weights[m_NumValues] = weight;
m_NumValues++;
}
}
示例5: newDistribution
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Computes new distributions of instances for nodes
* in tree.
*
* @param data the data to compute the distributions for
* @throws Exception if something goes wrong
*/
private void newDistribution(Instances data) throws Exception {
Instances [] localInstances;
localModel().resetDistribution(data);
m_train = data;
if (!m_isLeaf){
localInstances =
(Instances [])localModel().split(data);
for (int i = 0; i < m_sons.length; i++)
son(i).newDistribution(localInstances[i]);
} else {
// Check whether there are some instances at the leaf now!
if (!Utils.eq(data.sumOfWeights(), 0)) {
m_isEmpty = false;
}
}
}
示例6: distributionForInstance
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Calculates the class membership probabilities for the given test
* instance.
*
* @param instance the instance to be classified
* @return preedicted class probability distribution
* @throws Exception if distribution can't be computed successfully
*/
@Override
public double[] distributionForInstance(Instance instance) throws Exception {
double [] sums = new double [instance.numClasses()], newProbs;
double numPreds = 0;
for (int i = 0; i < m_NumIterations; i++) {
if (instance.classAttribute().isNumeric() == true) {
double pred = m_Classifiers[i].classifyInstance(instance);
if (!Utils.isMissingValue(pred)) {
sums[0] += pred;
numPreds++;
}
} else {
newProbs = m_Classifiers[i].distributionForInstance(instance);
for (int j = 0; j < newProbs.length; j++)
sums[j] += newProbs[j];
}
}
if (instance.classAttribute().isNumeric() == true) {
if (numPreds == 0) {
sums[0] = Utils.missingValue();
} else {
sums[0] /= numPreds;
}
return sums;
} else if (Utils.eq(Utils.sum(sums), 0)) {
return sums;
} else {
Utils.normalize(sums);
return sums;
}
}
示例7: countsToFreqs
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Normalizes branch sizes so they contain frequencies (stored in "props")
* instead of counts (stored in "dist"). <p>
*
* Overwrites the supplied "props"! <p>
*
* props.length must be == dist.length.
*/
protected static void countsToFreqs( float[][] dist, float[] props ) {
for (int k = 0; k < props.length; k++) {
props[k] = FastRfUtils.sum(dist[k]);
}
if (Utils.eq(FastRfUtils.sum(props), 0)) {
for (int k = 0; k < props.length; k++) {
props[k] = 1.0f / (float) props.length;
}
} else {
FastRfUtils.normalize(props);
}
}
示例8: norm
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Normalizes a given value of a numeric attribute.
*
* @param x the value to be normalized
* @param i the attribute's index
* @return the normalized value
*/
protected double norm(double x, int i) {
if (Double.isNaN(m_Min[i]) || Utils.eq(m_Max[i], m_Min[i])) {
return 0;
} else {
return (x - m_Min[i]) / (m_Max[i] - m_Min[i]);
}
}
示例9: norm
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Normalizes a given value of a numeric attribute.
*
* @param x the value to be normalized
* @param i the attribute's index
* @return the normalized value
*/
private double norm(double x, int i) {
if (Double.isNaN(m_minArray[i]) || Utils.eq(m_maxArray[i], m_minArray[i])) {
return 0;
} else {
return (x - m_minArray[i]) / (m_maxArray[i] - m_minArray[i]);
}
}
示例10: distributionForInstance
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Calculates the class membership probabilities for the given test
* instance.
*
* @param instance the instance to be classified
* @return preedicted class probability distribution
* @exception Exception if distribution can't be computed successfully
*/
public double[] distributionForInstance(Instance instance) throws Exception {
double [] sums = new double [instance.numClasses()], newProbs;
double numPreds = 0;
for (int i = 0; i < m_NumIterations; i++) {
if (instance.classAttribute().isNumeric() == true) {
double pred = m_Classifiers[i].classifyInstance(instance);
if (!Utils.isMissingValue(pred)) {
sums[0] += pred;
numPreds++;
}
} else {
newProbs = m_Classifiers[i].distributionForInstance(instance);
for (int j = 0; j < newProbs.length; j++)
sums[j] += newProbs[j];
}
}
if (instance.classAttribute().isNumeric() == true) {
if (numPreds == 0) {
sums[0] = Utils.missingValue();
} else {
sums[0] /= numPreds;
}
return sums;
} else if (Utils.eq(Utils.sum(sums), 0)) {
return sums;
} else {
Utils.normalize(sums);
return sums;
}
}
示例11: buildTree
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Builds the tree structure with hold out set
*
* @param train the data for which the tree structure is to be generated.
* @param test the test data for potential pruning
* @param keepData is training Data to be kept?
* @throws Exception if something goes wrong
*/
public void buildTree(Instances train, Instances test, boolean keepData)
throws Exception {
Instances[] localTrain, localTest;
int i;
if (keepData) {
m_train = train;
}
m_isLeaf = false;
m_isEmpty = false;
m_sons = null;
m_localModel = m_toSelectModel.selectModel(train, test);
m_test = new Distribution(test, m_localModel);
if (m_localModel.numSubsets() > 1) {
localTrain = m_localModel.split(train);
localTest = m_localModel.split(test);
train = null;
test = null;
m_sons = new ClassifierTree[m_localModel.numSubsets()];
for (i = 0; i < m_sons.length; i++) {
m_sons[i] = getNewTree(localTrain[i], localTest[i]);
localTrain[i] = null;
localTest[i] = null;
}
} else {
m_isLeaf = true;
if (Utils.eq(train.sumOfWeights(), 0)) {
m_isEmpty = true;
}
train = null;
test = null;
}
}
示例12: getEstimatedErrorsForTree
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Computes estimated errors for tree.
*/
private double getEstimatedErrorsForTree() {
if (m_isLeaf) {
return getEstimatedErrorsForLeaf();
} else {
double error = 0;
for (int i = 0; i < m_sons.length; i++) {
if (!Utils.eq(son(i).localModel().distribution().total(), 0)) {
error += ((C45PruneableDecList) son(i)).getEstimatedErrorsForTree();
}
}
return error;
}
}
示例13: addInstWithUnknown
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Adds all instances with unknown values for given attribute, weighted
* according to frequency of instances in each bag.
*
* @exception Exception if something goes wrong
*/
public final void addInstWithUnknown(Instances source, int attIndex)
throws Exception {
double[] probs;
double weight, newWeight;
int classIndex;
Instance instance;
int j;
probs = new double[m_perBag.length];
for (j = 0; j < m_perBag.length; j++) {
if (Utils.eq(totaL, 0)) {
probs[j] = 1.0 / probs.length;
} else {
probs[j] = m_perBag[j] / totaL;
}
}
Enumeration<Instance> enu = source.enumerateInstances();
while (enu.hasMoreElements()) {
instance = enu.nextElement();
if (instance.isMissing(attIndex)) {
classIndex = (int) instance.classValue();
weight = instance.weight();
m_perClass[classIndex] = m_perClass[classIndex] + weight;
totaL = totaL + weight;
for (j = 0; j < m_perBag.length; j++) {
newWeight = probs[j] * weight;
m_perClassPerBag[j][classIndex] = m_perClassPerBag[j][classIndex]
+ newWeight;
m_perBag[j] = m_perBag[j] + newWeight;
}
}
}
}
示例14: prob
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Returns relative frequency of class over all bags.
*/
public final double prob(int classIndex) {
if (!Utils.eq(totaL, 0)) {
return m_perClass[classIndex] / totaL;
} else {
return 0;
}
}
示例15: getEstimatedErrorsForDistribution
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Computes estimated errors for leaf.
*
* @param theDistribution the distribution to use
* @return the estimated errors
*/
private double getEstimatedErrorsForDistribution(Distribution
theDistribution){
if (Utils.eq(theDistribution.total(),0))
return 0;
else
return theDistribution.numIncorrect()+
Stats.addErrs(theDistribution.total(),
theDistribution.numIncorrect(),m_CF);
}