本文整理匯總了Java中weka.core.Utils.backQuoteChars方法的典型用法代碼示例。如果您正苦於以下問題:Java Utils.backQuoteChars方法的具體用法?Java Utils.backQuoteChars怎麽用?Java Utils.backQuoteChars使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類weka.core.Utils
的用法示例。
在下文中一共展示了Utils.backQuoteChars方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: doRunKeys
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets the keys for a specified run number. Different run numbers correspond
* to different randomizations of the data. Keys produced should be sent to
* the current ResultListener
*
* @param run the run number to get keys for.
* @throws Exception if a problem occurs while getting the keys
*/
@Override
public void doRunKeys(int run) throws Exception {
if (m_Instances == null) {
throw new Exception("No Instances set");
}
// Add in some fields to the key like run number, dataset name
Object[] seKey = m_SplitEvaluator.getKey();
Object[] key = new Object[seKey.length + 2];
key[0] = Utils.backQuoteChars(m_Instances.relationName());
key[1] = "" + run;
System.arraycopy(seKey, 0, key, 2, seKey.length);
if (m_ResultListener.isResultRequired(this, key)) {
try {
m_ResultListener.acceptResult(this, key, null);
} catch (Exception ex) {
// Save the train and test datasets for debugging purposes?
throw ex;
}
}
}
示例2: doRunKeys
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets the keys for a specified run number. Different run numbers correspond
* to different randomizations of the data. Keys produced should be sent to
* the current ResultListener
*
* @param run the run number to get keys for.
* @throws Exception if a problem occurs while getting the keys
*/
@Override
public void doRunKeys(int run) throws Exception {
if (m_Instances == null) {
throw new Exception("No Instances set");
}
// Add in some fields to the key like run number, dataset name
Object[] seKey = m_SplitEvaluator.getKey();
Object[] key = new Object[seKey.length + 2];
key[0] = Utils.backQuoteChars(m_Instances.relationName());
key[1] = "" + run;
System.arraycopy(seKey, 0, key, 2, seKey.length);
if (m_ResultListener.isResultRequired(this, key)) {
try {
m_ResultListener.acceptResult(this, key, null);
} catch (Exception ex) {
// Save the train and test datasets for debugging purposes?
throw ex;
}
}
}
示例3: doRunKeys
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets the keys for a specified run number. Different run numbers correspond
* to different randomizations of the data. Keys produced should be sent to
* the current ResultListener
*
* @param run the run number to get keys for.
* @throws Exception if a problem occurs while getting the keys
*/
@Override
public void doRunKeys(int run) throws Exception {
if (m_Instances == null) {
throw new Exception("No Instances set");
}
// Add in some fields to the key like run and fold number, dataset name
Object[] seKey = m_SplitEvaluator.getKey();
Object[] key = new Object[seKey.length + 3];
key[0] = Utils.backQuoteChars(m_Instances.relationName());
key[2] = "" + (((run - 1) % m_NumFolds) + 1);
key[1] = "" + (((run - 1) / m_NumFolds) + 1);
System.arraycopy(seKey, 0, key, 3, seKey.length);
if (m_ResultListener.isResultRequired(this, key)) {
try {
m_ResultListener.acceptResult(this, key, null);
} catch (Exception ex) {
// Save the train and test datasets for debugging purposes?
throw ex;
}
}
}
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:31,代碼來源:CrossValidationSplitResultProducer.java
示例4: toString
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets a text descrption of the result producer.
*
* @return a text description of the result producer.
*/
@Override
public String toString() {
String result = "LearningRateResultProducer: ";
result += getCompatibilityState();
if (m_Instances == null) {
result += ": <null Instances>";
} else {
result += ": " + Utils.backQuoteChars(m_Instances.relationName());
}
return result;
}
示例5: toString
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets a text descrption of the result producer.
*
* @return a text description of the result producer.
*/
@Override
public String toString() {
String result = "DatabaseResultProducer: ";
result += getCompatibilityState();
if (m_Instances == null) {
result += ": <null Instances>";
} else {
result += ": " + Utils.backQuoteChars(m_Instances.relationName());
}
return result;
}
示例6: doRunKeys
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets the keys for a specified run number. Different run numbers correspond
* to different randomizations of the data. Keys produced should be sent to
* the current ResultListener
*
* @param run the run number to get keys for.
* @throws Exception if a problem occurs while getting the keys
*/
@Override
public void doRunKeys(int run) throws Exception {
if (m_Instances == null) {
throw new Exception("No Instances set");
}
/*
* // Randomize on a copy of the original dataset Instances runInstances =
* new Instances(m_Instances); runInstances.randomize(new Random(run)); if
* (runInstances.classAttribute().isNominal()) {
* runInstances.stratify(m_NumFolds); }
*/
for (int fold = 0; fold < m_NumFolds; fold++) {
// Add in some fields to the key like run and fold number, dataset name
Object[] seKey = m_SplitEvaluator.getKey();
Object[] key = new Object[seKey.length + 3];
key[0] = Utils.backQuoteChars(m_Instances.relationName());
key[1] = "" + run;
key[2] = "" + (fold + 1);
System.arraycopy(seKey, 0, key, 3, seKey.length);
if (m_ResultListener.isResultRequired(this, key)) {
try {
m_ResultListener.acceptResult(this, key, null);
} catch (Exception ex) {
// Save the train and test datasets for debugging purposes?
throw ex;
}
}
}
}
示例7: toString
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets a text descrption of the result producer.
*
* @return a text description of the result producer.
*/
@Override
public String toString() {
String result = "CrossValidationResultProducer: ";
result += getCompatibilityState();
if (m_Instances == null) {
result += ": <null Instances>";
} else {
result += ": " + Utils.backQuoteChars(m_Instances.relationName());
}
return result;
}
示例8: toString
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets a text descrption of the result producer.
*
* @return a text description of the result producer.
*/
@Override
public String toString() {
String result = "ExplicitTestsetResultProducer: ";
result += getCompatibilityState();
if (m_Instances == null) {
result += ": <null Instances>";
} else {
result += ": " + Utils.backQuoteChars(m_Instances.relationName());
}
return result;
}
示例9: toString
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets a text descrption of the result producer.
*
* @return a text description of the result producer.
*/
@Override
public String toString() {
String result = "RandomSplitResultProducer: ";
result += getCompatibilityState();
if (m_Instances == null) {
result += ": <null Instances>";
} else {
result += ": " + Utils.backQuoteChars(m_Instances.relationName());
}
return result;
}
示例10: toString
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets a text descrption of the result producer.
*
* @return a text description of the result producer.
*/
@Override
public String toString() {
String result = "AveragingResultProducer: ";
result += getCompatibilityState();
if (m_Instances == null) {
result += ": <null Instances>";
} else {
result += ": " + Utils.backQuoteChars(m_Instances.relationName());
}
return result;
}
示例11: toString
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets a text descrption of the result producer.
*
* @return a text description of the result producer.
*/
@Override
public String toString() {
String result = "CrossValidationSplitResultProducer: ";
result += getCompatibilityState();
if (m_Instances == null) {
result += ": <null Instances>";
} else {
result += ": " + Utils.backQuoteChars(m_Instances.relationName());
}
return result;
}
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:18,代碼來源:CrossValidationSplitResultProducer.java
示例12: doRun
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets the results for a specified run number. Different run numbers
* correspond to different randomizations of the data. Results produced should
* be sent to the current ResultListener
*
* @param run the run number to get results for.
* @throws Exception if a problem occurs while getting the results
*/
@Override
public void doRun(int run) throws Exception {
if (getRawOutput()) {
if (m_ZipDest == null) {
m_ZipDest = new OutputZipper(m_OutputFile);
}
}
if (m_Instances == null) {
throw new Exception("No Instances set");
}
// Randomize on a copy of the original dataset
Instances runInstances = new Instances(m_Instances);
Random random = new Random(run);
runInstances.randomize(random);
if (runInstances.classAttribute().isNominal()) {
runInstances.stratify(m_NumFolds);
}
for (int fold = 0; fold < m_NumFolds; fold++) {
// Add in some fields to the key like run and fold number, dataset name
Object[] seKey = m_SplitEvaluator.getKey();
Object[] key = new Object[seKey.length + 3];
key[0] = Utils.backQuoteChars(m_Instances.relationName());
key[1] = "" + run;
key[2] = "" + (fold + 1);
System.arraycopy(seKey, 0, key, 3, seKey.length);
if (m_ResultListener.isResultRequired(this, key)) {
Instances train = runInstances.trainCV(m_NumFolds, fold, random);
Instances test = runInstances.testCV(m_NumFolds, fold);
try {
Object[] seResults = m_SplitEvaluator.getResult(train, test);
Object[] results = new Object[seResults.length + 1];
results[0] = getTimestamp();
System.arraycopy(seResults, 0, results, 1, seResults.length);
if (m_debugOutput) {
String resultName = ("" + run + "." + (fold + 1) + "."
+ Utils.backQuoteChars(runInstances.relationName()) + "." + m_SplitEvaluator
.toString()).replace(' ', '_');
resultName = Utils.removeSubstring(resultName, "weka.classifiers.");
resultName = Utils.removeSubstring(resultName, "weka.filters.");
resultName = Utils.removeSubstring(resultName,
"weka.attributeSelection.");
m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName);
}
m_ResultListener.acceptResult(this, key, results);
} catch (Exception ex) {
// Save the train and test datasets for debugging purposes?
throw ex;
}
}
}
}
示例13: doRun
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Gets the results for a specified run number. Different run numbers
* correspond to different randomizations of the data. Results produced should
* be sent to the current ResultListener
*
* @param run the run number to get results for.
* @throws Exception if a problem occurs while getting the results
*/
@Override
public void doRun(int run) throws Exception {
if (getRawOutput()) {
if (m_ZipDest == null) {
m_ZipDest = new OutputZipper(m_OutputFile);
}
}
if (m_Instances == null) {
throw new Exception("No Instances set");
}
// Compute run and fold number from given run
int fold = (run - 1) % m_NumFolds;
run = ((run - 1) / m_NumFolds) + 1;
// Randomize on a copy of the original dataset
Instances runInstances = new Instances(m_Instances);
Random random = new Random(run);
runInstances.randomize(random);
if (runInstances.classAttribute().isNominal()) {
runInstances.stratify(m_NumFolds);
}
// Add in some fields to the key like run and fold number, dataset name
Object[] seKey = m_SplitEvaluator.getKey();
Object[] key = new Object[seKey.length + 3];
key[0] = Utils.backQuoteChars(m_Instances.relationName());
key[1] = "" + run;
key[2] = "" + (fold + 1);
System.arraycopy(seKey, 0, key, 3, seKey.length);
if (m_ResultListener.isResultRequired(this, key)) {
// Just to make behaviour absolutely consistent with
// CrossValidationResultProducer
for (int tempFold = 0; tempFold < fold; tempFold++) {
runInstances.trainCV(m_NumFolds, tempFold, random);
}
Instances train = runInstances.trainCV(m_NumFolds, fold, random);
Instances test = runInstances.testCV(m_NumFolds, fold);
try {
Object[] seResults = m_SplitEvaluator.getResult(train, test);
Object[] results = new Object[seResults.length + 1];
results[0] = getTimestamp();
System.arraycopy(seResults, 0, results, 1, seResults.length);
if (m_debugOutput) {
String resultName = ("" + run + "." + (fold + 1) + "."
+ Utils.backQuoteChars(runInstances.relationName()) + "." + m_SplitEvaluator
.toString()).replace(' ', '_');
resultName = Utils.removeSubstring(resultName, "weka.classifiers.");
resultName = Utils.removeSubstring(resultName, "weka.filters.");
resultName = Utils.removeSubstring(resultName,
"weka.attributeSelection.");
m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName);
}
m_ResultListener.acceptResult(this, key, results);
} catch (Exception ex) {
// Save the train and test datasets for debugging purposes?
throw ex;
}
}
}
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:73,代碼來源:CrossValidationSplitResultProducer.java
示例14: getFieldSeparator
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Returns the character used as column separator.
*
* @return the character to use
*/
public String getFieldSeparator() {
return Utils.backQuoteChars(m_FieldSeparator);
}
示例15: getFieldSeparator
import weka.core.Utils; //導入方法依賴的package包/類
/**
* Returns the character used as column separator.
*
* @return the character to use
*/
public String getFieldSeparator() {
return Utils.backQuoteChars(m_FieldSeparator);
}