當前位置: 首頁>>代碼示例>>Java>>正文


Java Utils.gr方法代碼示例

本文整理匯總了Java中weka.core.Utils.gr方法的典型用法代碼示例。如果您正苦於以下問題:Java Utils.gr方法的具體用法?Java Utils.gr怎麽用?Java Utils.gr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.core.Utils的用法示例。


在下文中一共展示了Utils.gr方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: classifyInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Classifies an instance.
 * 
 * @param instance the instance to classify
 * @return the classification
 * @throws Exception if something goes wrong
 */
public double classifyInstance(Instance instance) throws Exception {

  double maxProb = -1;
  double currentProb;
  int maxIndex = 0;
  int j;

  for (j = 0; j < instance.numClasses(); j++) {
    currentProb = getProbs(j, instance, 1);
    if (Utils.gr(currentProb, maxProb)) {
      maxIndex = j;
      maxProb = currentProb;
    }
  }

  return maxIndex;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:25,代碼來源:ClassifierTree.java

示例2: splitEnt

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Help method for computing the split entropy.
 */
private final double splitEnt(Distribution bags, double totalnoInst) {

  double returnValue = 0;
  double noUnknown;
  int i;

  noUnknown = totalnoInst - bags.total();
  if (Utils.gr(bags.total(), 0)) {
    for (i = 0; i < bags.numBags(); i++) {
      returnValue = returnValue - lnFunc(bags.perBag(i));
    }
    returnValue = returnValue - lnFunc(noUnknown);
    returnValue = returnValue + lnFunc(totalnoInst);
  }
  return returnValue / ContingencyTables.log2;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:20,代碼來源:GainRatioSplitCrit.java

示例3: setSplitPoint

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Sets split point to greatest value in given data smaller or equal to old
 * split point. (C4.5 does this for some strange reason).
 */
public final void setSplitPoint(Instances allInstances) {

  double newSplitPoint = -Double.MAX_VALUE;
  double tempValue;
  Instance instance;

  if ((!allInstances.attribute(m_attIndex).isNominal()) && (m_numSubsets > 1)) {
    Enumeration<Instance> enu = allInstances.enumerateInstances();
    while (enu.hasMoreElements()) {
      instance = enu.nextElement();
      if (!instance.isMissing(m_attIndex)) {
        tempValue = instance.value(m_attIndex);
        if (Utils.gr(tempValue, newSplitPoint)
          && Utils.smOrEq(tempValue, m_splitPoint)) {
          newSplitPoint = tempValue;
        }
      }
    }
    m_splitPoint = newSplitPoint;
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:26,代碼來源:BinC45Split.java

示例4: dataDL

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * The description length of data given the parameters of the data based on
 * the ruleset.
 * <p>
 * Details see Quinlan: "MDL and categorical theories (Continued)",ML95
 * <p>
 * 
 * @param expFPOverErr expected FP/(FP+FN)
 * @param cover coverage
 * @param uncover uncoverage
 * @param fp False Positive
 * @param fn False Negative
 * @return the description length
 */
public static double dataDL(double expFPOverErr, double cover,
  double uncover, double fp, double fn) {
  double totalBits = Utils.log2(cover + uncover + 1.0); // how many data?
  double coverBits, uncoverBits; // What's the error?
  double expErr; // Expected FP or FN

  if (Utils.gr(cover, uncover)) {
    expErr = expFPOverErr * (fp + fn);
    coverBits = subsetDL(cover, fp, expErr / cover);
    uncoverBits = Utils.gr(uncover, 0.0) ? subsetDL(uncover, fn, fn / uncover)
      : 0.0;
  } else {
    expErr = (1.0 - expFPOverErr) * (fp + fn);
    coverBits = Utils.gr(cover, 0.0) ? subsetDL(cover, fp, fp / cover) : 0.0;
    uncoverBits = subsetDL(uncover, fn, expErr / uncover);
  }

  /*
   * System.err.println("!!!cover: " + cover + "|uncover" + uncover +
   * "|coverBits: "+coverBits+"|uncBits: "+ uncoverBits+
   * "|FPRate: "+expFPOverErr + "|expErr: "+expErr+
   * "|fp: "+fp+"|fn: "+fn+"|total: "+totalBits);
   */
  return (totalBits + coverBits + uncoverBits);
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:40,代碼來源:RuleStats.java

示例5: setSplitPoint

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Sets split point to greatest value in given data smaller or equal to old
 * split point. (C4.5 does this for some strange reason).
 */
public final void setSplitPoint(Instances allInstances) {

  double newSplitPoint = -Double.MAX_VALUE;
  double tempValue;
  Instance instance;

  if ((allInstances.attribute(m_attIndex).isNumeric()) && (m_numSubsets > 1)) {
    Enumeration<Instance> enu = allInstances.enumerateInstances();
    while (enu.hasMoreElements()) {
      instance = enu.nextElement();
      if (!instance.isMissing(m_attIndex)) {
        tempValue = instance.value(m_attIndex);
        if (Utils.gr(tempValue, newSplitPoint)
          && Utils.smOrEq(tempValue, m_splitPoint)) {
          newSplitPoint = tempValue;
        }
      }
    }
    m_splitPoint = newSplitPoint;
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:26,代碼來源:C45Split.java

示例6: classifyInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Classifies an instance.
 * 
 * @param instance the instance to classify
 * @return the classification
 * @throws Exception if instance can't be classified successfully
 */
@Override
public double classifyInstance(Instance instance) throws Exception {

  double maxProb = -1;
  int maxIndex = 0;

  // classify by maximum probability
  double[] probs = distributionForInstance(instance);
  for (int j = 0; j < instance.numClasses(); j++) {
    if (Utils.gr(probs[j], maxProb)) {
      maxIndex = j;
      maxProb = probs[j];
    }
  }
  return maxIndex;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:24,代碼來源:LMT.java

示例7: classifyInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Classifies an instance.
 * 
 * @exception Exception if instance can't be classified
 */
public double classifyInstance(Instance instance) throws Exception {

  double maxProb = -1;
  double[] sumProbs;
  int maxIndex = 0;

  sumProbs = distributionForInstance(instance);
  for (int j = 0; j < sumProbs.length; j++) {
    if (Utils.gr(sumProbs[j], maxProb)) {
      maxIndex = j;
      maxProb = sumProbs[j];
    }
  }

  return maxIndex;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:22,代碼來源:MakeDecList.java

示例8: distributionForInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Returns the class distribution for an instance.
 * 
 * @exception Exception if distribution can't be computed
 */
public double[] distributionForInstance(Instance instance) throws Exception {

  double[] currentProbs = null;
  double[] sumProbs;
  double currentWeight, weight = 1;
  int i, j;

  // Get probabilities.
  sumProbs = new double[instance.numClasses()];
  i = 0;
  while (Utils.gr(weight, 0)) {
    currentWeight = theRules.elementAt(i).weight(instance);
    if (Utils.gr(currentWeight, 0)) {
      currentProbs = theRules.elementAt(i).distributionForInstance(instance);
      for (j = 0; j < sumProbs.length; j++) {
        sumProbs[j] += weight * currentProbs[j];
      }
      weight = weight * (1 - currentWeight);
    }
    i++;
  }

  return sumProbs;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:30,代碼來源:MakeDecList.java

示例9: classifyInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Classifies an instance.
 * 
 * @exception Exception if something goes wrong
 */
public double classifyInstance(Instance instance) throws Exception {

  double maxProb = -1;
  double currentProb;
  int maxIndex = 0;
  int j;

  for (j = 0; j < instance.numClasses(); j++) {
    currentProb = getProbs(j, instance, 1);
    if (Utils.gr(currentProb, maxProb)) {
      maxIndex = j;
      maxProb = currentProb;
    }
  }
  if (Utils.eq(maxProb, 0)) {
    return -1.0;
  } else {
    return maxIndex;
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:26,代碼來源:ClassifierDecList.java

示例10: dumpLabel

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Prints label for subset index of instances (eg class).
 *
 * @exception Exception if something goes wrong
 */
public final String dumpLabel(int index,Instances data) throws Exception {

  StringBuffer text;

  text = new StringBuffer();
  text.append(((Instances)data).classAttribute().
value(m_distribution.maxClass(index)));
  text.append(" ("+Utils.roundDouble(m_distribution.perBag(index),2));
  if (Utils.gr(m_distribution.numIncorrect(index),0))
    text.append("/"+Utils.roundDouble(m_distribution.numIncorrect(index),2));
  text.append(")");

  return text.toString();
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:20,代碼來源:ClassifierSplitModel.java

示例11: actualNumClasses

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Returns number of classes actually occuring in distribution.
 */
public final int actualNumClasses() {

  int returnValue = 0;
  int i;

  for (i = 0; i < m_perClass.length; i++) {
    if (Utils.gr(m_perClass[i], 0)) {
      returnValue++;
    }
  }

  return returnValue;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:17,代碼來源:Distribution.java

示例12: laplaceProb

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Returns relative frequency of class for given bag.
 */
public final double laplaceProb(int classIndex, int intIndex) {

  if (Utils.gr(m_perBag[intIndex], 0)) {
    return (m_perClassPerBag[intIndex][classIndex] + 1.0)
      / (m_perBag[intIndex] + m_perClass.length);
  } else {
    return laplaceProb(classIndex);
  }

}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:14,代碼來源:Distribution.java

示例13: computeAverageClassValues

import weka.core.Utils; //導入方法依賴的package包/類
/** Computes average class values for each attribute and value */
private void computeAverageClassValues() {

  double totalCounts, sum;
  Instance instance;
  double[] counts;

  double[][] avgClassValues = new double[getInputFormat().numAttributes()][0];
  m_Indices = new int[getInputFormat().numAttributes()][0];
  for (int j = 0; j < getInputFormat().numAttributes(); j++) {
    Attribute att = getInputFormat().attribute(j);
    if (att.isNominal()) {
      avgClassValues[j] = new double[att.numValues()];
      counts = new double[att.numValues()];
      for (int i = 0; i < getInputFormat().numInstances(); i++) {
        instance = getInputFormat().instance(i);
        if (!instance.classIsMissing() && (!instance.isMissing(j))) {
          counts[(int) instance.value(j)] += instance.weight();
          avgClassValues[j][(int) instance.value(j)] += instance.weight()
            * instance.classValue();
        }
      }
      sum = Utils.sum(avgClassValues[j]);
      totalCounts = Utils.sum(counts);
      if (Utils.gr(totalCounts, 0)) {
        for (int k = 0; k < att.numValues(); k++) {
          if (Utils.gr(counts[k], 0)) {
            avgClassValues[j][k] /= counts[k];
          } else {
            avgClassValues[j][k] = sum / totalCounts;
          }
        }
      }
      m_Indices[j] = Utils.sort(avgClassValues[j]);
    }
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:38,代碼來源:NominalToBinary.java

示例14: checkClassifier

import weka.core.Utils; //導入方法依賴的package包/類
/**
    * Quick and dirty check whether the quadratic programming problem is solved.
    * 
    * @throws Exception if checking fails
    */
   protected void checkClassifier() throws Exception {

     double sum = 0;
     for (int i = 0; i < m_alpha.length; i++) {
if (m_alpha[i] > 0) {
  sum += m_class[i] * m_alpha[i];
}
     }
     System.err.println("Sum of y(i) * alpha(i): " + sum);

     for (int i = 0; i < m_alpha.length; i++) {
double output = SVMOutput(i, m_data.instance(i));
if (Utils.eq(m_alpha[i], 0)) {
  if (Utils.sm(m_class[i] * output, 1)) {
    System.err.println("KKT condition 1 violated: " + m_class[i] * output);
  }
} 
if (Utils.gr(m_alpha[i], 0) && 
    Utils.sm(m_alpha[i], m_C * m_data.instance(i).weight())) {
  if (!Utils.eq(m_class[i] * output, 1)) {
    System.err.println("KKT condition 2 violated: " + m_class[i] * output);
  }
} 
if (Utils.eq(m_alpha[i], m_C * m_data.instance(i).weight())) {
  if (Utils.gr(m_class[i] * output, 1)) {
    System.err.println("KKT condition 3 violated: " + m_class[i] * output);
  }
} 
     }
   }
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:36,代碼來源:SMO.java

示例15: buildClassifier

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Generates the classifier.
 * 
 * @param instances set of instances serving as training data
 * @throws Exception if the classifier has not been generated successfully
 */
@Override
public void buildClassifier(Instances instances) throws Exception {
  // can classifier handle the data?
  getCapabilities().testWithFail(instances);

  // remove instances with missing class
  instances = new Instances(instances);
  instances.deleteWithMissingClass();

  double sumOfWeights = 0;

  m_Class = instances.classAttribute();
  m_ClassValue = 0;
  switch (instances.classAttribute().type()) {
  case Attribute.NUMERIC:
    m_Counts = null;
    break;
  case Attribute.NOMINAL:
    m_Counts = new double[instances.numClasses()];
    for (int i = 0; i < m_Counts.length; i++) {
      m_Counts[i] = 1;
    }
    sumOfWeights = instances.numClasses();
    break;
  }
  Enumeration<Instance> enu = instances.enumerateInstances();
  while (enu.hasMoreElements()) {
    Instance instance = enu.nextElement();
    if (!instance.classIsMissing()) {
      if (instances.classAttribute().isNominal()) {
        m_Counts[(int) instance.classValue()] += instance.weight();
      } else {
        m_ClassValue += instance.weight() * instance.classValue();
      }
      sumOfWeights += instance.weight();
    }
  }
  if (instances.classAttribute().isNumeric()) {
    if (Utils.gr(sumOfWeights, 0)) {
      m_ClassValue /= sumOfWeights;
    }
  } else {
    m_ClassValue = Utils.maxIndex(m_Counts);
    Utils.normalize(m_Counts, sumOfWeights);
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:53,代碼來源:ZeroR.java


注:本文中的weka.core.Utils.gr方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。