當前位置: 首頁>>代碼示例>>Java>>正文


Java Utils.isMissingValue方法代碼示例

本文整理匯總了Java中weka.core.Utils.isMissingValue方法的典型用法代碼示例。如果您正苦於以下問題:Java Utils.isMissingValue方法的具體用法?Java Utils.isMissingValue怎麽用?Java Utils.isMissingValue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.core.Utils的用法示例。


在下文中一共展示了Utils.isMissingValue方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: applyMissingValueTreatment

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Apply the missing value treatment method for this field.
 *
 * @param value the incoming value to apply the treatment to
 * @return the value after applying the missing value treatment (if any)
 * @throws Exception if there is a problem
 */
public double applyMissingValueTreatment(double value) throws Exception {
  double newVal = value;
  if (m_missingValueTreatmentMethod != Missing.ASIS && 
      Utils.isMissingValue(value)) {
    if (m_missingValueReplacementNominal != null) {
      Attribute att = m_miningSchemaI.attribute(m_index);
      int valIndex = att.indexOfValue(m_missingValueReplacementNominal);
      if (valIndex < 0) {
        throw new Exception("[MiningSchema] Nominal missing value replacement value doesn't "
                            + "exist in the mining schema Instances!");
      }
      newVal = valIndex;
    } else {
      newVal = m_missingValueReplacementNumeric;
    }
  }
  return newVal;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:26,代碼來源:MiningFieldMetaInfo.java

示例2: distributionForInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Predicts the class memberships for a given instance. If an instance is
 * unclassified, the returned array elements must be all zero. If the class is
 * numeric, the array must consist of only one element, which contains the
 * predicted value. Note that a classifier MUST implement either this or
 * classifyInstance().
 *
 * @param instance the instance to be classified
 * @return an array containing the estimated membership probabilities of the
 *         test instance in each class or the numeric prediction
 * @exception Exception if distribution could not be computed successfully
 */
@Override
public double[] distributionForInstance(Instance instance) throws Exception {

  double[] dist = new double[instance.numClasses()];
  switch (instance.classAttribute().type()) {
  case Attribute.NOMINAL:
    double classification = classifyInstance(instance);
    if (Utils.isMissingValue(classification)) {
      return dist;
    } else {
      dist[(int) classification] = 1.0;
    }
    return dist;
  case Attribute.NUMERIC:
  case Attribute.DATE:
    dist[0] = classifyInstance(instance);
    return dist;
  default:
    return dist;
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:34,代碼來源:AbstractClassifier.java

示例3: getResult

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Get the result of evaluating the expression. In the case
 * of a continuous optype, a real number is returned; in
 * the case of a categorical/ordinal optype, the index of the nominal
 * value is returned as a double.
 * 
 * @param incoming the incoming parameter values
 * @return the result of evaluating the expression
 * @throws Exception if there is a problem computing the result
 */
public double getResult(double[] incoming) throws Exception {
  
  double result = 0.0;
  if (Utils.isMissingValue(incoming[m_fieldIndex])) {
    if (m_mapMissingDefined) {
      result = m_mapMissingTo; // return the replacement
    } else {
      result = incoming[m_fieldIndex]; // just return the missing value
    }
  } else {
    if (m_fieldValueIndex == (int)incoming[m_fieldIndex]) {
      result = 1.0;
    }
  }
  
  return result;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:28,代碼來源:NormDiscrete.java

示例4: score

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Score the incoming instance
 * 
 * @param instance a vector containing the incoming independent and
 * derived independent variables
 * @param classAtt the class attribute
 * @param rsm the rule selection method (ignored by simple rules)
 * @return a probability distribution over the class labels or
 * the predicted value (in element zero of the array if the class is numeric)
 * @throws Exception if something goes wrong
 */
public double[] score(double[] instance, Attribute classAtt) 
  throws Exception {
  
  double[] preds;
  if (classAtt.isNumeric()) {
    preds = new double[1];
    preds[0] = m_score;
  } else {
    preds = new double[classAtt.numValues()];
    if (m_scoreDistributions.size() > 0) {
      for (TreeModel.ScoreDistribution s : m_scoreDistributions) {
        preds[s.getClassLabelIndex()] = s.getConfidence();
      }
    } else if (!Utils.isMissingValue(m_confidence)) {
      preds[classAtt.indexOfValue(m_scoreString)] = m_confidence;
    } else {
      preds[classAtt.indexOfValue(m_scoreString)] = 1.0;
    }
  }      
  
  return preds;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:34,代碼來源:RuleSetModel.java

示例5: toString

import weka.core.Utils; //導入方法依賴的package包/類
public String toString(String prefix, int indent) {
  StringBuffer temp = new StringBuffer();
  
  for (int i = 0; i < indent; i++) {
    prefix += " ";
  }
  
  temp.append(prefix + "Simple rule: " + m_predicate + "\n");
  temp.append(prefix + " => " + m_scoreString + "\n");
  if (!Utils.isMissingValue(m_recordCount)) {
    temp.append(prefix + " recordCount: " + m_recordCount + "\n");
  }
  if (!Utils.isMissingValue(m_nbCorrect)) {
    temp.append(prefix + "   nbCorrect: " + m_nbCorrect + "\n");
  }
  if (!Utils.isMissingValue(m_confidence)) {
    temp.append(prefix + "  confidence: " + m_confidence + "\n");
  }
  if (!Utils.isMissingValue(m_weight)) {
    temp.append(prefix + "      weight: " + m_weight + "\n");
  }
  
  return temp.toString();
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:25,代碼來源:RuleSetModel.java

示例6: residualReplace

import weka.core.Utils; //導入方法依賴的package包/類
/**
  * Replace the class values of the instances from the current iteration
  * with residuals ater predicting with the supplied classifier.
  *
  * @param data the instances to predict
  * @param c the classifier to use
  * @param useShrinkage whether shrinkage is to be applied to the model's output
  * @return a new set of instances with class values replaced by residuals
  * @throws Exception if something goes wrong
  */
 private Instances residualReplace(Instances data, Classifier c, 
			    boolean useShrinkage) throws Exception {
   double pred,residual;
   Instances newInst = new Instances(data);

   for (int i = 0; i < newInst.numInstances(); i++) {
     pred = c.classifyInstance(newInst.instance(i));
     if (Utils.isMissingValue(pred)) {
       throw new UnassignedClassException("AdditiveRegression: base learner predicted missing value.");
     }
     if (useShrinkage) {
pred *= getShrinkage();
     }
     residual = newInst.instance(i).classValue() - pred;
     newInst.instance(i).setClassValue(residual);
   }
   //    System.err.print(newInst);
   return newInst;
 }
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:30,代碼來源:AdditiveRegression.java

示例7: update

import weka.core.Utils; //導入方法依賴的package包/類
@Override
public void update(double attVal, String classVal, double weight) {
  if (!Utils.isMissingValue(attVal)) {
    GaussianEstimator norm = (GaussianEstimator) m_classLookup.get(classVal);
    if (norm == null) {
      norm = new GaussianEstimator();
      m_classLookup.put(classVal, norm);
      m_minValObservedPerClass.put(classVal, attVal);
      m_maxValObservedPerClass.put(classVal, attVal);
    } else {
      if (attVal < m_minValObservedPerClass.get(classVal)) {
        m_minValObservedPerClass.put(classVal, attVal);
      }

      if (attVal > m_maxValObservedPerClass.get(classVal)) {
        m_maxValObservedPerClass.put(classVal, attVal);
      }
    }
    norm.addValue(attVal, weight);
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:22,代碼來源:GaussianConditionalSufficientStats.java

示例8: weightedAreaUnderPRC

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Calculates the weighted (by class size) AUPRC.
 * 
 * @return the weighted AUPRC.
 */
public double weightedAreaUnderPRC() {
  double[] classCounts = new double[m_NumClasses];
  double classCountSum = 0;

  for (int i = 0; i < m_NumClasses; i++) {
    for (int j = 0; j < m_NumClasses; j++) {
      classCounts[i] += m_ConfusionMatrix[i][j];
    }
    classCountSum += classCounts[i];
  }

  double auprcTotal = 0;
  for (int i = 0; i < m_NumClasses; i++) {
    double temp = areaUnderPRC(i);
    if (!Utils.isMissingValue(temp)) {
      auprcTotal += (temp * classCounts[i]);
    }
  }

  return auprcTotal / classCountSum;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:27,代碼來源:Evaluation.java

示例9: makeDistribution

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Convert a single prediction into a probability distribution with all zero
 * probabilities except the predicted value which has probability 1.0.
 * 
 * @param predictedClass the index of the predicted class
 * @return the probability distribution
 */
protected double[] makeDistribution(double predictedClass) {

  double[] result = new double[m_NumClasses];
  if (Utils.isMissingValue(predictedClass)) {
    return result;
  }
  if (m_ClassIsNominal) {
    result[(int) predictedClass] = 1.0;
  } else {
    result[0] = predictedClass;
  }
  return result;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:21,代碼來源:Evaluation.java

示例10: getNumericAttributeStatsSparse

import weka.core.Utils; //導入方法依賴的package包/類
public static NumericStats getNumericAttributeStatsSparse(
  Instances denormalized, int attIndex) {
  NumericStats ns = new NumericStats(denormalized.attribute(attIndex).name());

  for (int j = 0; j < denormalized.numInstances(); j++) {
    double value = denormalized.instance(j).value(attIndex);

    if (Utils.isMissingValue(value) || value == 0) {
      ns.getStats()[ArffSummaryNumericMetric.MISSING.ordinal()]++;
    } else {
      ns.getStats()[ArffSummaryNumericMetric.COUNT.ordinal()]++;
      ns.getStats()[ArffSummaryNumericMetric.SUM.ordinal()] += value;
      ns.getStats()[ArffSummaryNumericMetric.SUMSQ.ordinal()] += value
        * value;
      if (Double.isNaN(ns.getStats()[ArffSummaryNumericMetric.MIN.ordinal()])) {
        ns.getStats()[ArffSummaryNumericMetric.MIN.ordinal()] =
          ns.getStats()[ArffSummaryNumericMetric.MAX
            .ordinal()] = value;
      } else if (value < ns.getStats()[ArffSummaryNumericMetric.MIN.ordinal()]) {
        ns.getStats()[ArffSummaryNumericMetric.MIN.ordinal()] = value;
      } else if (value > ns.getStats()[ArffSummaryNumericMetric.MAX.ordinal()]) {
        ns.getStats()[ArffSummaryNumericMetric.MAX.ordinal()] = value;
      }
    }
  }

  ns.computeDerived();

  return ns;
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:31,代碼來源:DistributedUtils.java

示例11: dumpTree

import weka.core.Utils; //導入方法依賴的package包/類
protected void dumpTree(int level, StringBuffer text) {
  if (m_childNodes.size() > 0) {

    for (int i = 0; i < m_childNodes.size(); i++) {
      text.append("\n");

      /*
       * for (int j = 0; j < level; j++) { text.append("|   "); }
       */

      // output the predicate for this child node
      TreeNode child = m_childNodes.get(i);
      text.append(child.getPredicate().toString(level, false));

      // process recursively
      child.dumpTree(level + 1, text);
    }
  } else {
    // leaf
    text.append(": ");
    if (!Utils.isMissingValue(m_scoreNumeric)) {
      text.append(m_scoreNumeric);
    } else {
      text.append(m_scoreString + " ");
      if (m_scoreDistributions.size() > 0) {
        text.append("[");
        for (ScoreDistribution s : m_scoreDistributions) {
          text.append(s);
        }
        text.append("]");
      } else {
        text.append(m_scoreString);
      }
    }
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:37,代碼來源:TreeModel.java

示例12: difference

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Computes the difference between two given attribute values.
 */
private double difference(int index, double val1, double val2) {

  switch (m_trainInstances.attribute(index).type()) {
  case Attribute.NOMINAL:

    // If attribute is nominal
    if (Utils.isMissingValue(val1) || Utils.isMissingValue(val2)) {
      return (1.0 - (1.0 / (m_trainInstances.attribute(index).numValues())));
    } else if ((int) val1 != (int) val2) {
      return 1;
    } else {
      return 0;
    }
  case Attribute.NUMERIC:

    // If attribute is numeric
    if (Utils.isMissingValue(val1) || Utils.isMissingValue(val2)) {
      if (Utils.isMissingValue(val1) && Utils.isMissingValue(val2)) {
        return 1;
      } else {
        double diff;
        if (Utils.isMissingValue(val2)) {
          diff = norm(val1, index);
        } else {
          diff = norm(val2, index);
        }
        if (diff < 0.5) {
          diff = 1.0 - diff;
        }
        return diff;
      }
    } else {
      return Math.abs(norm(val1, index) - norm(val2, index));
    }
  default:
    return 0;
  }
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:42,代碼來源:ReliefFAttributeEval.java

示例13: distributionForInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
  * Calculates the class membership probabilities for the given test
  * instance.
  *
  * @param instance the instance to be classified
  * @return preedicted class probability distribution
  * @exception Exception if distribution can't be computed successfully 
  */
 public double[] distributionForInstance(Instance instance) throws Exception {

   double [] sums = new double [instance.numClasses()], newProbs; 
   
   double numPreds = 0;
   for (int i = 0; i < m_NumIterations; i++) {
     if (instance.classAttribute().isNumeric() == true) {
       double pred = m_Classifiers[i].classifyInstance(instance);
       if (!Utils.isMissingValue(pred)) {
         sums[0] += pred;
         numPreds++;
       }
     } else {
newProbs = m_Classifiers[i].distributionForInstance(instance);
for (int j = 0; j < newProbs.length; j++)
  sums[j] += newProbs[j];
     }
   }
   if (instance.classAttribute().isNumeric() == true) {
     if (numPreds == 0) {
       sums[0] = Utils.missingValue();
     } else {
       sums[0] /= numPreds;
     }
     return sums;
   } else if (Utils.eq(Utils.sum(sums), 0)) {
     return sums;
   } else {
     Utils.normalize(sums);
     return sums;
   }
 }
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:41,代碼來源:RandomCommittee.java

示例14: distributionForInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
  * Calculates the class membership probabilities for the given test
  * instance.
  *
  * @param instance 	the instance to be classified
  * @return 		preedicted class probability distribution
  * @throws Exception 	if distribution can't be computed successfully 
  */
 public double[] distributionForInstance(Instance instance) throws Exception {

   // default model?
   if (m_ZeroR != null) {
     return m_ZeroR.distributionForInstance(instance);
   }
   
   double[] sums = new double [instance.numClasses()], newProbs; 
   
   double numPreds = 0;
   for (int i = 0; i < m_NumIterations; i++) {
     if (instance.classAttribute().isNumeric() == true) {
       double pred = m_Classifiers[i].classifyInstance(instance);
       if (!Utils.isMissingValue(pred)) {
         sums[0] += pred;
         numPreds++;
       }
     } else {
newProbs = m_Classifiers[i].distributionForInstance(instance);
for (int j = 0; j < newProbs.length; j++)
  sums[j] += newProbs[j];
     }
   }
   if (instance.classAttribute().isNumeric() == true) {
     if (numPreds == 0) {
       sums[0] = Utils.missingValue();
     } else {
       sums[0] /= numPreds;
     }
     return sums;
   } else if (Utils.eq(Utils.sum(sums), 0)) {
     return sums;
   } else {
     Utils.normalize(sums);
     return sums;
   }
 }
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:46,代碼來源:RandomSubSpace.java

示例15: distributionForInstance

import weka.core.Utils; //導入方法依賴的package包/類
/**
 * Calculates the class membership probabilities for the given test instance.
 *
 * @param instance the instance to be classified
 * @return predicted class probability distribution
 * @throws Exception if instance could not be classified successfully
 */
public double[] distributionForInstance(Instance inst) throws Exception {

  // default model?
  if (m_ZeroR != null) {
    return m_ZeroR.distributionForInstance(inst);
  }

  double[] Fs = new double[m_NumClasses];
  double[] pred = new double[m_NumClasses];
  Instance instance = (Instance) inst.copy();
  instance.setDataset(m_NumericClassData);
  for (int i = 0; i < m_NumGenerated; i++) {
    double predSum = 0;
    for (int j = 0; j < m_NumClasses; j++) {
      double tempPred =
        m_Shrinkage * m_Classifiers.get(i)[j].classifyInstance(instance);
      if (Utils.isMissingValue(tempPred)) {
        throw new UnassignedClassException(
          "LogitBoost: base learner predicted missing value.");
      }
      pred[j] = tempPred;
      if (m_NumClasses == 2) {
        pred[1] = -tempPred; // Can treat 2 classes as special case
        break;
      }
      predSum += pred[j];
    }
    predSum /= m_NumClasses;
    for (int j = 0; j < m_NumClasses; j++) {
      Fs[j] += (pred[j] - predSum) * (m_NumClasses - 1) / m_NumClasses;
    }
  }

  return probs(Fs);
}
 
開發者ID:mydzigear,項目名稱:repo.kmeanspp.silhouette_score,代碼行數:43,代碼來源:LogitBoost.java


注:本文中的weka.core.Utils.isMissingValue方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。