本文整理匯總了Java中edu.jas.poly.ExpVector.totalDeg方法的典型用法代碼示例。如果您正苦於以下問題:Java ExpVector.totalDeg方法的具體用法?Java ExpVector.totalDeg怎麽用?Java ExpVector.totalDeg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類edu.jas.poly.ExpVector
的用法示例。
在下文中一共展示了ExpVector.totalDeg方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: ecart
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Ecart.
* @return ecart.
*/
public long ecart() {
ExpVector e = orderExpVector();
if (e == null) {
return 0L;
}
long d = e.totalDeg();
long hd = d;
for (long i = d + 1L; i <= truncate; i++) {
if (!homogeneousPart(i).isZERO()) {
hd = i;
}
}
//System.out.println("d = " + d + ", hd = " + hd + ", coeffCache = " + lazyCoeffs.coeffCache + ", this = " + this);
return hd - d;
}
示例2: sum
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Sum a another power series.
* @param ps other power series.
* @return this + ps.
*/
public MultiVarPowerSeries<C> sum(final MultiVarPowerSeries<C> ps) {
//final MultiVarPowerSeries<C> ps1 = this; // method name was ambiguous in generate
int nt = Math.min(ring.truncate, Math.max(truncate(), ps.truncate()));
return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {
@Override
public C generate(ExpVector e) {
long tdeg = e.totalDeg();
if (lazyCoeffs.homCheck.get((int) tdeg)) {
// generate respective homogeneous polynomial
GenPolynomial<C> p = homogeneousPart(tdeg).sum(ps.homogeneousPart(tdeg));
coeffCache.put(tdeg, p); // overwrite
homCheck.set((int) tdeg);
C c = p.coefficient(e);
//System.out.println("c = " + c + ", e = " + e + ", tdeg = " + tdeg);
return c;
}
return coefficient(e).sum(ps.coefficient(e));
}
}, nt);
}
示例3: subtract
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Subtract a another power series.
* @param ps other power series.
* @return this - ps.
*/
public MultiVarPowerSeries<C> subtract(final MultiVarPowerSeries<C> ps) {
//final MultiVarPowerSeries<C> ps1 = this; // method name was ambiguous in generate
int nt = Math.min(ring.truncate, Math.max(truncate(), ps.truncate()));
return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {
@Override
public C generate(ExpVector e) {
long tdeg = e.totalDeg();
if (lazyCoeffs.homCheck.get((int) tdeg)) {
// generate respective homogeneous polynomial
GenPolynomial<C> p = homogeneousPart(tdeg).subtract(ps.homogeneousPart(tdeg));
coeffCache.put(tdeg, p); // overwrite
homCheck.set((int) tdeg);
C c = p.coefficient(e);
//System.out.println("p = " + p + ", e = " + e + ", tdeg = " + tdeg);
return c;
}
return coefficient(e).subtract(ps.coefficient(e));
}
}, nt);
}
示例4: get
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Get cached coefficient or generate coefficient.
* @param index of requested coefficient.
* @return coefficient at index.
*/
public C get(ExpVector index) {
//if (index.signum() < 0) { // better assert
// throw new IllegalArgumentException("negative signum not allowed " + index);
//}
//if (coeffCache == null) { // not possible
// return generate(index);
//}
long tdeg = index.totalDeg();
GenPolynomial<C> p = coeffCache.get(tdeg);
if (p == null) {
p = pfac.getZERO().copy();
coeffCache.put(tdeg, p);
}
C c = p.coefficient(index);
if (!c.isZERO()) {
return c;
}
if (homCheck.get((int) tdeg)) { // rely on p
return c;
}
if (zeroCache.contains(index)) {
return c;
}
C g = generate(index);
if (g.isZERO()) {
zeroCache.add(index);
} else {
p.doPutToMap(index, g);
}
return g;
}
示例5: reductum
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Reductum.
* @return this - leading monomial.
*/
public MultiVarPowerSeries<C> reductum() {
Map.Entry<ExpVector, C> m = orderMonomial();
if (m == null) {
return ring.getZERO();
}
ExpVector e = m.getKey();
long d = e.totalDeg();
MultiVarCoefficients<C> mc = lazyCoeffs;
HashMap<Long, GenPolynomial<C>> cc = new HashMap<Long, GenPolynomial<C>>(mc.coeffCache);
GenPolynomial<C> p = cc.get(d);
if (p != null && !p.isZERO()) {
p = p.subtract(m.getValue(), e); // p contains this term after orderMonomial()
cc.put(d, p);
}
HashSet<ExpVector> z = new HashSet<ExpVector>(mc.zeroCache);
if (!mc.homCheck.get((int) d)) {
z.add(e);
//System.out.println("e = " + e);
}
return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(mc.pfac, cc, z, mc.homCheck) {
@Override
public C generate(ExpVector i) {
return coefficient(i);
}
});
}
示例6: multiply
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Multiply by exponent vector and coefficient.
* @param k shift ExpVector.
* @param c coefficient multiplier.
* @return new power series with coefficient(i) = old.coefficient(i-k)*c.
*/
public MultiVarPowerSeries<C> multiply(final C c, final ExpVector k) {
if (k == null) {
throw new IllegalArgumentException("null ExpVector not allowed");
}
if (k.signum() == 0) {
return this.multiply(c);
}
if (c.signum() == 0) {
return ring.getZERO();
}
int nt = Math.min(ring.truncate, truncate + (int) k.totalDeg());
return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {
@Override
public C generate(ExpVector i) {
ExpVector d = i.subtract(k);
if (d.signum() < 0) {
return ring.coFac.getZERO();
}
long tdegd = d.totalDeg();
if (lazyCoeffs.homCheck.get((int) tdegd)) {
GenPolynomial<C> p = homogeneousPart(tdegd).multiply(c, k);
long tdegi = i.totalDeg();
coeffCache.put(tdegi, p); // overwrite
homCheck.set((int) tdegi);
C b = p.coefficient(i);
//System.out.println("b = " + b + ", i = " + i + ", tdegi = " + tdegi+ ", tdegd = " + tdegd);
//System.out.println("p = " + p + ", i = " + i);
return b;
}
return coefficient(d).multiply(c);
}
}, nt);
}
示例7: order
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Order.
* @return index of first non zero coefficient.
*/
public int order() {
if (order >= 0) {
return order;
}
// must compute it
GenPolynomial<C> p = null;
int t = 0;
while (lazyCoeffs.homCheck.get(t)) {
p = lazyCoeffs.coeffCache.get((long) t);
if (p == null || p.isZERO()) { // ??
t++;
continue;
}
order = t;
evorder = p.trailingExpVector();
//System.out.println("order = " + t);
return order;
}
for (ExpVector i : new ExpVectorIterable(ring.nvar, true, truncate)) {
if (!coefficient(i).isZERO()) {
order = (int) i.totalDeg(); //ord;
evorder = i;
//System.out.println("order = " + order + ", evorder = " + evorder);
return order;
}
}
order = truncate + 1;
// evorder is null
return order;
}
示例8: inverse
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Inverse power series.
* @return ps with this * ps = 1.
*/
public MultiVarPowerSeries<C> inverse() {
return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {
@Override
public C generate(ExpVector e) {
long tdeg = e.totalDeg();
C d = leadingCoefficient().inverse(); // may fail
if (tdeg == 0) {
return d;
}
GenPolynomial<C> p = null; //fac.getZERO();
for (int k = 0; k < tdeg; k++) {
GenPolynomial<C> m = getHomPart(k).multiply(homogeneousPart(tdeg - k));
if (p == null) {
p = m;
} else {
p = p.sum(m);
}
}
p = p.multiply(d.negate());
//System.out.println("tdeg = " + tdeg + ", p = " + p);
coeffCache.put(tdeg, p); // overwrite
homCheck.set((int) tdeg);
C c = p.coefficient(e);
return c;
}
});
}
示例9: isNormalPositionFor
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Test if this ideal is in normal position for variables i and j.
* @param i first variable index
* @param j second variable index
* @return true if this is in normal position with respect to i and j
*/
public boolean isNormalPositionFor(int i, int j) {
// called in extended ring!
int ip = list.ring.nvar - 1 - i;
int jp = list.ring.nvar - 1 - j;
boolean iOK = false;
boolean jOK = false;
for (GenPolynomial<C> p : getList()) {
if (p.isZERO()) {
continue;
}
ExpVector e = p.leadingExpVector();
int[] dov = e.dependencyOnVariables();
//System.out.println("dov = " + Arrays.toString(dov));
if (dov.length == 0) {
throw new IllegalArgumentException("ideal dimension is not zero");
}
if (dov[0] == ip) {
if (e.totalDeg() != 1) {
return false;
}
iOK = true;
} else if (dov[0] == jp) {
if (e.totalDeg() != 1) {
return false;
}
jOK = true;
}
if (iOK && jOK) {
return true;
}
}
return iOK && jOK;
}
示例10: redTerms
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Compute the residues to given polynomial list.
* @return List of reduced terms
*/
public List<GenPolynomial<C>> redTerms(List<GenPolynomial<C>> groebnerBasis) {
if (groebnerBasis == null || groebnerBasis.size() == 0) {
throw new IllegalArgumentException("groebnerBasis may not be null or empty");
}
GenPolynomialRing<C> ring = groebnerBasis.get(0).ring;
int numberOfVariables = ring.nvar; //Number of Variables of the given Polynomial Ring
long[] degrees = new long[numberOfVariables]; //Array for the degree-limits for the reduced terms
List<GenPolynomial<C>> terms = new ArrayList<GenPolynomial<C>>(); //Instantiate the return object
for (GenPolynomial<C> g : groebnerBasis) { //For each polynomial of G
if (g.isONE()) {
terms.clear();
return terms; //If 1 e G, return empty list terms
}
ExpVector e = g.leadingExpVector(); //Take the exponent of the leading monomial
if (e.totalDeg() == e.maxDeg()) { //and check, whether a variable x_i is isolated
for (int i = 0; i < numberOfVariables; i++) {
long exp = e.getVal(i);
if (exp > 0) {
degrees[i] = exp; //if true, add the degree of univariate x_i to array degrees
}
}
}
}
long max = maxArray(degrees); //Find maximum in Array degrees
for (int i = 0; i < degrees.length; i++) { //Set all zero grades to maximum of array "degrees"
if (degrees[i] == 0) {
logger.info("dimension not zero, setting degree to " + max);
degrees[i] = max; //--> to "make" the ideal zero-dimensional
}
}
terms.add(ring.ONE); //Add the one-polynomial of the ring to the list of reduced terms
ReductionSeq<C> s = new ReductionSeq<C>(); //Create instance of ReductionSeq to use method isReducible
//Main Algorithm
for (int i = 0; i < numberOfVariables; i++) {
GenPolynomial<C> x = ring.univariate(i); //Create Linear Polynomial X_i
List<GenPolynomial<C>> S = new ArrayList<GenPolynomial<C>>(terms); //Copy all entries of return list "terms" into list "S"
for (GenPolynomial<C> t : S) {
for (int l = 1; l <= degrees[i]; l++) {
t = t.multiply(x); //Multiply current element t with Linear Polynomial X_i
if (!s.isReducible(groebnerBasis, t)) { //Check, if t is irreducible mod groebnerbase
terms.add(t); //Add t to return list terms
}
}
}
}
return terms;
}