當前位置: 首頁>>代碼示例>>Java>>正文


Java ExpVector.getVal方法代碼示例

本文整理匯總了Java中edu.jas.poly.ExpVector.getVal方法的典型用法代碼示例。如果您正苦於以下問題:Java ExpVector.getVal方法的具體用法?Java ExpVector.getVal怎麽用?Java ExpVector.getVal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在edu.jas.poly.ExpVector的用法示例。


在下文中一共展示了ExpVector.getVal方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: shift

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Shift coefficients.
 * @param k shift index.
 * @param r variable for the direction.
 * @return new power series with coefficient(i) = old.coefficient(i-k).
 */
public MultiVarPowerSeries<C> shift(final int k, final int r) {
    if (r < 0 || ring.nvar < r) {
        throw new IllegalArgumentException("variable index out of bound");
    }
    int nt = Math.min(truncate + k, ring.truncate);
    return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {


        @Override
        public C generate(ExpVector i) {
            long d = i.getVal(r);
            if (d - k < 0) {
                return ring.coFac.getZERO();
            }
            ExpVector e = i.subst(r, i.getVal(r) - k);
            return coefficient(e);
        }
    }, nt);
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:26,代碼來源:MultiVarPowerSeries.java

示例2: differentiate

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Differentiate with respect to variable r.
 * @param r variable for the direction.
 * @return differentiate(this).
 */
public MultiVarPowerSeries<C> differentiate(final int r) {
    if (r < 0 || ring.nvar < r) {
        throw new IllegalArgumentException("variable index out of bound");
    }
    return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {


        @Override
        public C generate(ExpVector i) {
            long d = i.getVal(r);
            ExpVector e = i.subst(r, d + 1);
            C v = coefficient(e);
            v = v.multiply(ring.coFac.fromInteger(d + 1));
            return v;
        }
    });
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:23,代碼來源:MultiVarPowerSeries.java

示例3: integrate

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Integrate with respect to variable r and with given constant.
 * @param c integration constant.
 * @param r variable for the direction.
 * @return integrate(this).
 */
public MultiVarPowerSeries<C> integrate(final C c, final int r) {
    if (r < 0 || ring.nvar < r) {
        throw new IllegalArgumentException("variable index out of bound");
    }
    int nt = Math.min(ring.truncate, truncate + 1);
    return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {


        @Override
        public C generate(ExpVector i) {
            if (i.isZERO()) {
                return c;
            }
            long d = i.getVal(r);
            if (d > 0) {
                ExpVector e = i.subst(r, d - 1);
                C v = coefficient(e);
                v = v.divide(ring.coFac.fromInteger(d));
                return v;
            }
            return ring.coFac.getZERO();
        }
    }, nt);
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:31,代碼來源:MultiVarPowerSeries.java

示例4: deriviative

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Multi-partial deriviative.
 * @param i exponent vector.
 * @return partial deriviative of this with respect to all variables.
 */
public TaylorFunction<C> deriviative(ExpVector i) {
    GenPolynomial<C> p = pol;
    long f = 1L;
    if (i.signum() == 0 || pol.isZERO()) {
        return new PolynomialTaylorFunction<C>(p, f);
    }
    for (int j = 0; j < i.length(); j++) {
        long e = i.getVal(j);
        if (e == 0) {
            continue;
        }
        int jl = i.length() - 1 - j;
        for (long k = 0; k < e; k++) {
            p = PolyUtil.<C> baseDeriviative(p, jl);
            f *= (k + 1);
            if (p.isZERO()) {
                return new PolynomialTaylorFunction<C>(p, f);
            }
        }
    }
    //System.out.println("i = " + i + ", f = " + f + ", der = " + p);
    return new PolynomialTaylorFunction<C>(p, f);
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:29,代碼來源:PolynomialTaylorFunction.java

示例5: substituteKronecker

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Kronecker substitution. Substitute x_i by x**d**(i-1) to construct a
 * univariate polynomial.
 * @param A polynomial to be converted.
 * @return a univariate polynomial.
 */
public static <C extends GcdRingElem<C>> GenPolynomial<C> substituteKronecker(GenPolynomial<C> A, long d) {
    if (A == null) {
        return A;
    }
    RingFactory<C> cfac = A.ring.coFac;
    GenPolynomialRing<C> ufac = new GenPolynomialRing<C>(cfac, 1);
    GenPolynomial<C> B = ufac.getZERO().copy();
    if (A.isZERO()) {
        return B;
    }
    for (Map.Entry<ExpVector, C> y : A.getMap().entrySet()) {
        ExpVector e = y.getKey();
        C a = y.getValue();
        long f = 0L;
        long h = 1L;
        for (int i = 0; i < e.length(); i++) {
            long j = e.getVal(i) * h;
            f += j;
            h *= d;
        }
        ExpVector g = ExpVector.create(1, 0, f);
        B.doPutToMap(g, a);
    }
    return B;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:32,代碼來源:PolyUfdUtil.java

示例6: factorDegrees

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * BitSet for factor degree list.
 * @param E exponent vector list.
 * @return b_0,...,b_k} a BitSet of possible factor degrees.
 */
public BitSet factorDegrees(List<ExpVector> E, int deg) {
    BitSet D = new BitSet(deg + 1);
    D.set(0); // constant factor
    for (ExpVector e : E) {
        int i = (int) e.getVal(0);
        BitSet s = new BitSet(deg + 1);
        for (int k = 0; k < deg + 1 - i; k++) { // shift by i places
            s.set(i + k, D.get(k));
        }
        //System.out.println("s = " + s);
        D.or(s);
        //System.out.println("D = " + D);
    }
    return D;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:21,代碼來源:FactorInteger.java

示例7: generate

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
@Override
public BigRational generate(ExpVector i) {
    int[] v = i.dependencyOnVariables();
    if (v.length == 1 && i.getVal(v[0]) == 1L) {
        return pfac.coFac.getONE();
    }
    return pfac.coFac.getZERO();
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:9,代碼來源:MultiVarPowerSeriesTest.java

示例8: fromPowerSeries

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Get a MultiVarPowerSeries&lt;C&gt; from a univariate power series.
 * @param ps UnivPowerSeries&lt;C&gt;.
 * @param r variable for the direction.
 * @return a MultiVarPowerSeries&lt;C&gt;.
 */
public MultiVarPowerSeries<C> fromPowerSeries(final UnivPowerSeries<C> ps, final int r) {
    if (ps == null) {
        return ZERO;
    }
    return new MultiVarPowerSeries<C>(this, new MultiVarCoefficients<C>(this) {


        @Override
        public C generate(ExpVector i) {
            if (i.isZERO()) {
                return ps.coefficient(0);
            }
            int[] dep = i.dependencyOnVariables();
            if (dep.length != 1) {
                return coFac.getZERO();
            }
            if (dep[0] != r) {
                return coFac.getZERO();
            }
            int j = (int) i.getVal(r);
            if (j > 0) {
                return ps.coefficient(j);
            }
            return coFac.getZERO();
        }
    });
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:34,代碼來源:MultiVarPowerSeriesRing.java

示例9: backSubstituteKronecker

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Kronecker back substitution. Substitute x**d**(i-1) to x_i to construct a
 * multivariate polynomial.
 * @param A polynomial to be converted.
 * @param fac result polynomial factory.
 * @return a multivariate polynomial.
 */
public static <C extends GcdRingElem<C>> GenPolynomial<C> backSubstituteKronecker(
                GenPolynomialRing<C> fac, GenPolynomial<C> A, long d) {
    if (A == null) {
        return A;
    }
    if (fac == null) {
        throw new IllegalArgumentException("null factory not allowed ");
    }
    int n = fac.nvar;
    GenPolynomial<C> B = fac.getZERO().copy();
    if (A.isZERO()) {
        return B;
    }
    for (Map.Entry<ExpVector, C> y : A.getMap().entrySet()) {
        ExpVector e = y.getKey();
        C a = y.getValue();
        long f = e.getVal(0);
        ExpVector g = ExpVector.create(n);
        for (int i = 0; i < n; i++) {
            long j = f % d;
            f /= d;
            g = g.subst(i, j);
        }
        B.doPutToMap(g, a);
    }
    return B;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:35,代碼來源:PolyUfdUtil.java

示例10: degreeSum

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Sum of all degrees.
 * @param L univariate polynomial list.
 * @return sum deg(p) for p in L.
 */
public static <C extends RingElem<C>> long degreeSum(List<GenPolynomial<C>> L) {
    long s = 0L;
    for (GenPolynomial<C> p : L) {
        ExpVector e = p.leadingExpVector();
        long d = e.getVal(0);
        s += d;
    }
    return s;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:15,代碼來源:FactorInteger.java

示例11: solve

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Solve Integer Program for new right hand side. Uses the GB (matrix A and
 * C) from the last calculation.
 * @param B restrictions right hand side
 * @return solution s, such that s*C -&gt; minimal and A*s = B, or s = null
 *         if no solution exists
 */
public long[] solve(long[] B) {
    long[] returnMe = new long[n];
    if (B.length != m) {
        System.out.println("ERROR: Dimensions don't match: " + B.length + " != " + m);
        return returnMe;
    }
    long[] l;
    this.B = Arrays.copyOf(B, B.length);
    if (DEBUG) {
        logger.debug("GB=" + GB);
    }
    if (negVars) {
        l = new long[m + n + 1];
        long min = findMin(B);
        if (min < 0) {
            long r = -min;
            l[m + n] = r;
            for (int i = 0; i < m; i++) {
                l[m + n - 1 - i] = B[i] + r;
            }
        } else {
            for (int i = 0; i < m; i++) {
                l[m + n - 1 - i] = B[i];
            }
        }
    } else {
        l = new long[m + n];
        for (int i = 0; i < m; i++) {
            l[m + n - 1 - i] = B[i];
        }
    }
    ExpVector e = new ExpVectorLong(l);
    S = new GenPolynomial<BigInteger>(I.getRing(), e);
    S = GB.normalform(S);

    ExpVector E = S.exponentIterator().next();
    for (int i = 0; i < n; i++) {
        returnMe[n - 1 - i] = E.getVal(i);
    }
    success = true;
    for (int i = n; i < n + m; i++) {
        if (E.getVal(i) != 0) {
            success = false;
            break;
        }
    }
    if (success) {
        if (DEBUG) {
            logger.debug("The solution is: " + Arrays.toString(returnMe));
        }
    } else {
        logger.warn("The Problem does not have a feasible solution.");
        returnMe = null;
    }
    return returnMe;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:64,代碼來源:IntegerProgram.java

示例12: redTerms

import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
 * Compute the residues to given polynomial list.
 * @return List of reduced terms
 */
public List<GenPolynomial<C>> redTerms(List<GenPolynomial<C>> groebnerBasis) {
    if (groebnerBasis == null || groebnerBasis.size() == 0) {
        throw new IllegalArgumentException("groebnerBasis may not be null or empty");
    }
    GenPolynomialRing<C> ring = groebnerBasis.get(0).ring;
    int numberOfVariables = ring.nvar; //Number of Variables of the given Polynomial Ring
    long[] degrees = new long[numberOfVariables]; //Array for the degree-limits for the reduced terms

    List<GenPolynomial<C>> terms = new ArrayList<GenPolynomial<C>>(); //Instantiate the return object
    for (GenPolynomial<C> g : groebnerBasis) { //For each polynomial of G
        if (g.isONE()) {
            terms.clear();
            return terms; //If 1 e G, return empty list terms
        }
        ExpVector e = g.leadingExpVector(); //Take the exponent of the leading monomial             
        if (e.totalDeg() == e.maxDeg()) { //and check, whether a variable x_i is isolated
            for (int i = 0; i < numberOfVariables; i++) {
                long exp = e.getVal(i);
                if (exp > 0) {
                    degrees[i] = exp; //if true, add the degree of univariate x_i to array degrees
                }
            }
        }
    }
    long max = maxArray(degrees); //Find maximum in Array degrees
    for (int i = 0; i < degrees.length; i++) { //Set all zero grades to maximum of array "degrees"
        if (degrees[i] == 0) {
            logger.info("dimension not zero, setting degree to " + max);
            degrees[i] = max; //--> to "make" the ideal zero-dimensional
        }
    }
    terms.add(ring.ONE); //Add the one-polynomial of the ring to the list of reduced terms
    ReductionSeq<C> s = new ReductionSeq<C>(); //Create instance of ReductionSeq to use method isReducible

    //Main Algorithm
    for (int i = 0; i < numberOfVariables; i++) {
        GenPolynomial<C> x = ring.univariate(i); //Create  Linear Polynomial X_i
        List<GenPolynomial<C>> S = new ArrayList<GenPolynomial<C>>(terms); //Copy all entries of return list "terms" into list "S"
        for (GenPolynomial<C> t : S) {
            for (int l = 1; l <= degrees[i]; l++) {
                t = t.multiply(x); //Multiply current element t with Linear Polynomial X_i
                if (!s.isReducible(groebnerBasis, t)) { //Check, if t is irreducible mod groebnerbase
                    terms.add(t); //Add t to return list terms
                }
            }
        }
    }
    return terms;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:54,代碼來源:GroebnerBaseFGLM.java


注:本文中的edu.jas.poly.ExpVector.getVal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。