本文整理匯總了Java中edu.jas.poly.ExpVector.subtract方法的典型用法代碼示例。如果您正苦於以下問題:Java ExpVector.subtract方法的具體用法?Java ExpVector.subtract怎麽用?Java ExpVector.subtract使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類edu.jas.poly.ExpVector
的用法示例。
在下文中一共展示了ExpVector.subtract方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: shift
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Shift coefficients. Multiply by exponent vector.
* @param k shift ExpVector.
* @return new power series with coefficient(i) = old.coefficient(i-k).
*/
public MultiVarPowerSeries<C> shift(final ExpVector k) {
if (k == null) {
throw new IllegalArgumentException("null ExpVector not allowed");
}
if (k.signum() == 0) {
return this;
}
int nt = Math.min(truncate + (int) k.totalDeg(), ring.truncate);
return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {
@Override
public C generate(ExpVector i) {
ExpVector d = i.subtract(k);
if (d.signum() < 0) {
return ring.coFac.getZERO();
}
return coefficient(d);
}
}, nt);
}
示例2: criterion4
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GB criterium 4. Use only for commutative polynomial rings. <b>Note:</b>
* Experimental version for r-Groebner bases.
* @param A polynomial.
* @param B polynomial.
* @return true if the S-polynomial(i,j) is required, else false.
*/
@Override
public boolean criterion4(GenPolynomial<C> A, GenPolynomial<C> B) {
if (logger.isInfoEnabled()) {
if (A instanceof GenSolvablePolynomial || B instanceof GenSolvablePolynomial) {
logger.error("GBCriterion4 not applicabable to SolvablePolynomials");
return true;
}
}
ExpVector ei = A.leadingExpVector();
ExpVector ej = B.leadingExpVector();
ExpVector g = ei.sum(ej);
ExpVector e = ei.lcm(ej);
// boolean t = g == e ;
ExpVector h = g.subtract(e);
int s = h.signum();
if (s == 0) { // disjoint ht
C a = A.leadingBaseCoefficient();
C b = B.leadingBaseCoefficient();
C d = a.multiply(b);
if (d.isZERO()) { // a guess
return false; // can skip pair
}
}
return true; //! ( s == 0 );
}
示例3: criterion4
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GB criterium 4. Use only for commutative polynomial rings. This version
* works also for d-Groebner bases.
* @param A polynomial.
* @param B polynomial.
* @return true if the S-polynomial(i,j) is required, else false.
*/
@Override
public boolean criterion4(GenPolynomial<C> A, GenPolynomial<C> B) {
if (logger.isInfoEnabled()) {
if (A instanceof GenSolvablePolynomial || B instanceof GenSolvablePolynomial) {
logger.error("GBCriterion4 not applicabable to SolvablePolynomials");
return true;
}
}
ExpVector ei = A.leadingExpVector();
ExpVector ej = B.leadingExpVector();
ExpVector g = ei.sum(ej);
ExpVector e = ei.lcm(ej);
// boolean t = g == e ;
ExpVector h = g.subtract(e);
int s = h.signum();
if (s == 0) { // disjoint ht
C a = A.leadingBaseCoefficient();
C b = B.leadingBaseCoefficient();
C d = a.gcd(b);
if (d.isONE()) { // disjoint hc
return false; // can skip pair
}
}
return true; //! ( s == 0 );
}
示例4: GPolynomial
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* G-Polynomial.
* @param Ap polynomial.
* @param Bp polynomial.
* @return gpol(Ap,Bp) the g-polynomial of Ap and Bp.
*/
public GenPolynomial<C> GPolynomial(GenPolynomial<C> Ap, GenPolynomial<C> Bp) {
if (logger.isInfoEnabled()) {
if (Bp == null || Bp.isZERO()) {
return Ap.ring.getZERO();
}
if (Ap == null || Ap.isZERO()) {
return Bp.ring.getZERO();
}
if (!Ap.ring.equals(Bp.ring)) {
logger.error("rings not equal");
}
}
Map.Entry<ExpVector, C> ma = Ap.leadingMonomial();
Map.Entry<ExpVector, C> mb = Bp.leadingMonomial();
ExpVector e = ma.getKey();
ExpVector f = mb.getKey();
ExpVector g = e.lcm(f);
ExpVector e1 = g.subtract(e);
ExpVector f1 = g.subtract(f);
C a = ma.getValue();
C b = mb.getValue();
C[] c = a.egcd(b);
//System.out.println("egcd[0] " + c[0]);
GenPolynomial<C> App = Ap.multiply(c[1], e1);
GenPolynomial<C> Bpp = Bp.multiply(c[2], f1);
GenPolynomial<C> Cp = App.sum(Bpp);
return Cp;
}
示例5: leftSPolynomial
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Left S-Polynomial.
* @param Ap solvable polynomial.
* @param Bp solvable polynomial.
* @return left-spol(Ap,Bp) the left S-polynomial of Ap and Bp.
*/
public GenSolvablePolynomial<C> leftSPolynomial(GenSolvablePolynomial<C> Ap, GenSolvablePolynomial<C> Bp) {
if (logger.isInfoEnabled()) {
if (Bp == null || Bp.isZERO()) {
if (Ap != null) {
return Ap.ring.getZERO();
}
return null;
}
if (Ap == null || Ap.isZERO()) {
return Bp.ring.getZERO();
}
if (!Ap.ring.equals(Bp.ring)) {
logger.error("rings not equal");
}
}
Map.Entry<ExpVector, C> ma = Ap.leadingMonomial();
Map.Entry<ExpVector, C> mb = Bp.leadingMonomial();
ExpVector e = ma.getKey();
ExpVector f = mb.getKey();
ExpVector g = e.lcm(f);
ExpVector e1 = g.subtract(e);
ExpVector f1 = g.subtract(f);
C a = ma.getValue();
C b = mb.getValue();
GenSolvablePolynomial<C> App = Ap.multiplyLeft(b, e1);
GenSolvablePolynomial<C> Bpp = Bp.multiplyLeft(a, f1);
GenSolvablePolynomial<C> Cp = (GenSolvablePolynomial<C>) App.subtract(Bpp);
return Cp;
}
示例6: SPolynomial
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* S-Polynomial.
* @param Ap polynomial.
* @param Bp polynomial.
* @return spol(Ap,Bp) the S-polynomial of Ap and Bp.
*/
@Override
public GenPolynomial<C> SPolynomial(GenPolynomial<C> Ap, GenPolynomial<C> Bp) {
if (logger.isInfoEnabled()) {
if (Bp == null || Bp.isZERO()) {
return Ap.ring.getZERO();
}
if (Ap == null || Ap.isZERO()) {
return Bp.ring.getZERO();
}
if (!Ap.ring.equals(Bp.ring)) {
logger.error("rings not equal");
}
}
Map.Entry<ExpVector, C> ma = Ap.leadingMonomial();
Map.Entry<ExpVector, C> mb = Bp.leadingMonomial();
ExpVector e = ma.getKey();
ExpVector f = mb.getKey();
ExpVector g = e.lcm(f);
ExpVector e1 = g.subtract(e);
ExpVector f1 = g.subtract(f);
C a = ma.getValue();
C b = mb.getValue();
C c = a.gcd(b);
C m = a.multiply(b);
C l = m.divide(c); // = lcm(a,b)
C a1 = l.divide(a);
C b1 = l.divide(b);
GenPolynomial<C> App = Ap.multiply(a1, e1);
GenPolynomial<C> Bpp = Bp.multiply(b1, f1);
GenPolynomial<C> Cp = App.subtract(Bpp);
return Cp;
}
示例7: SPolynomialExpVectorFactors
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* S-Polynomial factors.
* @param A monic polynomial.
* @param B monic polynomial.
* @return exponent vectors [e,f] such that spol(A,B) = e*a - f*B.
*/
public ExpVector[] SPolynomialExpVectorFactors(SigPoly<C> A, SigPoly<C> B) {
Map.Entry<ExpVector, C> ma = A.poly.leadingMonomial();
Map.Entry<ExpVector, C> mb = B.poly.leadingMonomial();
ExpVector e = ma.getKey();
ExpVector f = mb.getKey();
ExpVector g = e.lcm(f);
ExpVector e1 = g.subtract(e);
ExpVector f1 = g.subtract(f);
ExpVector[] F = new ExpVector[] { e1, f1 };
return F;
}
示例8: SPolynomialHalf
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* S-Polynomial half.
* @param A monic polynomial.
* @param B monic polynomial.
* @return e*A "half" of an S-polynomial such that spol(A,B) = e*A - f*B.
*/
public GenPolynomial<C> SPolynomialHalf(SigPoly<C> A, SigPoly<C> B) {
Map.Entry<ExpVector, C> ma = A.poly.leadingMonomial();
Map.Entry<ExpVector, C> mb = B.poly.leadingMonomial();
ExpVector e = ma.getKey();
ExpVector f = mb.getKey();
ExpVector g = e.lcm(f);
ExpVector e1 = g.subtract(e);
GenPolynomial<C> F = A.poly.multiply(e1);
return F;
}
示例9: isSigRedundant
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Is sigma redundant.
* @param A polynomial.
* @param G polynomial list.
* @return true if A is sigma redundant with respect to G.
*/
public boolean isSigRedundant(List<SigPoly<C>> G, SigPoly<C> A) {
if (G.isEmpty()) {
return false;
}
ExpVector e = A.sigma.leadingExpVector();
if (e == null) {
e = A.poly.ring.evzero;
}
for (SigPoly<C> p : G) {
if (p.sigma.isZERO()) {
continue;
}
ExpVector f = p.sigma.leadingExpVector();
if (f == null) { // does not happen
f = p.poly.ring.evzero;
}
boolean mt = e.multipleOf(f);
if (mt) {
ExpVector g = e.subtract(f);
ExpVector h = p.poly.leadingExpVector();
h = h.sum(g);
if (h.compareTo(A.poly.leadingExpVector()) == 0) {
return true;
}
}
}
return false;
}
示例10: SPolynomial
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* S-Polynomial with recording.
* @param S recording matrix, is modified. <b>Note</b> the negative
* S-polynomial is recorded as required by all applications.
* @param i index of Ap in basis list.
* @param A a polynomial.
* @param j index of Bp in basis list.
* @param B a polynomial.
* @return Spol(A, B), the S-Polynomial for A and B.
*/
public GenPolynomial<C> SPolynomial(List<GenPolynomial<C>> S, int i, GenPolynomial<C> A, int j,
GenPolynomial<C> B) {
if (debug) {
if (B == null || B.isZERO()) {
throw new ArithmeticException("Spol B is zero");
}
if (A == null || A.isZERO()) {
throw new ArithmeticException("Spol A is zero");
}
if (!A.ring.equals(B.ring)) {
logger.error("rings not equal " + A.ring + ", " + B.ring);
}
}
Map.Entry<ExpVector, C> ma = A.leadingMonomial();
Map.Entry<ExpVector, C> mb = B.leadingMonomial();
ExpVector e = ma.getKey();
ExpVector f = mb.getKey();
ExpVector g = e.lcm(f);
ExpVector e1 = g.subtract(e);
ExpVector f1 = g.subtract(f);
C a = ma.getValue();
C b = mb.getValue();
//GenPolynomial<C> App = A.multiply(b, e1);
//GenPolynomial<C> Bpp = B.multiply(a, f1);
//GenPolynomial<C> Cp = App.subtract(Bpp);
GenPolynomial<C> Cp = A.scaleSubtractMultiple(b, e1, a, f1, B);
GenPolynomial<C> zero = A.ring.getZERO();
GenPolynomial<C> As = zero.sum(b.negate(), e1);
GenPolynomial<C> Bs = zero.sum(a /*correct .negate()*/, f1);
S.set(i, As);
S.set(j, Bs);
return Cp;
}
示例11: coefficientPseudoRemainder
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Polynomial leading coefficient pseudo remainder.
* @param P generic polynomial in n+1 variables.
* @param A generic polynomial in n variables.
* @return pseudo remainder of the leading coefficient of P wrt A, with
* ldcf(A)<sup>m'</sup> P = quotient * A + remainder.
*/
public static <C extends RingElem<C>> GenPolynomial<GenPolynomial<GenPolynomial<C>>> coefficientPseudoRemainder(
GenPolynomial<GenPolynomial<GenPolynomial<C>>> P, GenPolynomial<GenPolynomial<C>> A) {
if (A == null || A.isZERO()) { // findbugs
throw new ArithmeticException(P + " division by zero " + A);
}
if (A.isONE()) {
return P.ring.getZERO();
}
if (P.isZERO() || P.isONE()) {
return P;
}
GenPolynomialRing<GenPolynomial<GenPolynomial<C>>> pfac = P.ring;
GenPolynomialRing<GenPolynomial<C>> afac = A.ring; // == pfac.coFac
GenPolynomial<GenPolynomial<GenPolynomial<C>>> r = P;
GenPolynomial<GenPolynomial<C>> h;
GenPolynomial<GenPolynomial<GenPolynomial<C>>> hr;
GenPolynomial<GenPolynomial<C>> ldcf = P.leadingBaseCoefficient();
long m = ldcf.degree(0);
long n = A.degree(0);
GenPolynomial<C> c = A.leadingBaseCoefficient();
GenPolynomial<GenPolynomial<C>> cc = afac.getZERO().sum(c);
//System.out.println("cc = " + cc);
ExpVector e = A.leadingExpVector();
for (long i = m; i >= n; i--) {
if (r.isZERO()) {
return r;
}
GenPolynomial<GenPolynomial<C>> p = r.leadingBaseCoefficient();
ExpVector g = r.leadingExpVector();
long k = p.degree(0);
if (i == k) {
GenPolynomial<C> pl = p.leadingBaseCoefficient();
ExpVector f = p.leadingExpVector();
f = f.subtract(e);
r = r.multiply(cc); // coeff cc
h = A.multiply(pl, f); // coeff ac
hr = new GenPolynomial<GenPolynomial<GenPolynomial<C>>>(pfac, h, g);
r = r.subtract(hr);
} else {
r = r.multiply(cc);
}
//System.out.println("r = " + r);
}
if (r.degree(0) < P.degree(0)) { // recursion for degree
r = coefficientPseudoRemainder(r, A);
}
return r;
}
示例12: normalform
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Normalform. Allows concurrent modification of the DHT.
* @param Ap polynomial.
* @param mp a map from Integers to polynomials, e.g. a distributed hash
* table, concurrent modification allowed.
* @return nf(Ap) with respect to Pp.
*/
@SuppressWarnings("cast")
public GenPolynomial<C> normalform(Map<Integer, GenPolynomial<C>> mp, GenPolynomial<C> Ap) {
if (mp == null || mp.isEmpty()) {
return Ap;
}
if (Ap == null || Ap.isZERO()) {
return Ap;
}
int l;
GenPolynomial<C>[] P;
//synchronized ( mp ) { // no more required
l = mp.size();
P = (GenPolynomial<C>[]) new GenPolynomial[l];
P = mp.values().toArray(P);
l = P.length;
//}
Map.Entry<ExpVector, C> m;
Map.Entry<ExpVector, C> m1;
ExpVector e;
ExpVector f = null;
C a;
boolean mt = false;
GenPolynomial<C> Rz = Ap.ring.getZERO();
GenPolynomial<C> R = Rz.copy();
GenPolynomial<C> p = null;
//GenPolynomial<C> Q = null;
GenPolynomial<C> S = Ap.copy();
while (S.length() > 0) {
if (mp.size() != l) {
//long t = System.currentTimeMillis();
//synchronized ( mp ) { // no more required, ok in distributed
P = mp.values().toArray(P);
l = P.length;
//}
//t = System.currentTimeMillis()-t;
//logger.info("Pp.toArray() = " + t + " ms, size() = " + l);
//logger.info("Pp.toArray() size() = " + l);
S = Ap.copy(); // S.add(R)? // restart reduction ?
R = Rz.copy();
}
m = S.leadingMonomial();
e = m.getKey();
a = m.getValue();
for (int i = 0; i < P.length; i++) {
p = P[i];
f = p.leadingExpVector();
if (f != null) {
mt = e.multipleOf(f);
if (mt)
break;
}
}
if (!mt) {
//logger.debug("irred");
//R = R.sum( a, e );
//S = S.subtract( a, e );
R.doPutToMap(e, a);
S.doRemoveFromMap(e, a);
// System.out.println(" S = " + S);
} else {
//logger.debug("red");
m1 = p.leadingMonomial();
e = e.subtract(f);
a = a.divide(m1.getValue());
//Q = p.multiply( a, e );
//S = S.subtract( Q );
S = S.subtractMultiple(a, e, p);
}
}
return R;
}
示例13: leftBasePseudoQuotientRemainder
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GenSolvablePolynomial sparse pseudo quotient and remainder for univariate
* polynomials or exact division.
* @param <C> coefficient type.
* @param P GenSolvablePolynomial.
* @param S nonzero GenSolvablePolynomial.
* @return [ quotient, remainder ] with ore(ldcf(S)<sup>m'</sup>) P =
* quotient * S + remainder. m' ≤ deg(P)-deg(S)
* @see edu.jas.poly.GenPolynomial#divide(edu.jas.poly.GenPolynomial).
*/
@SuppressWarnings("unchecked")
public static <C extends GcdRingElem<C>> GenSolvablePolynomial<C>[] leftBasePseudoQuotientRemainder(
GenSolvablePolynomial<C> P, GenSolvablePolynomial<C> S) {
if (S == null || S.isZERO()) {
throw new ArithmeticException(P.toString() + " division by zero " + S);
}
//if (S.ring.nvar != 1) { // ok if exact division
// throw new RuntimeException("univariate polynomials only");
//}
GenSolvablePolynomial<C>[] ret = new GenSolvablePolynomial[2];
ret[0] = null;
ret[1] = null;
if (P.isZERO() || S.isONE()) {
ret[0] = P;
ret[1] = S.ring.getZERO();
return ret;
}
if (P instanceof RecSolvablePolynomial) {
RecSolvablePolynomial<C> Pr = (RecSolvablePolynomial) P;
if (!Pr.ring.coeffTable.isEmpty()) {
throw new UnsupportedOperationException(
"RecSolvablePolynomial with twisted coeffs not supported");
}
}
GreatestCommonDivisorAbstract<C> fd = new GreatestCommonDivisorFake<C>(P.ring.coFac);
ExpVector e = S.leadingExpVector();
GenSolvablePolynomial<C> h;
GenSolvablePolynomial<C> r = P;
GenSolvablePolynomial<C> q = S.ring.getZERO().copy();
while (!r.isZERO()) {
ExpVector f = r.leadingExpVector();
if (f.multipleOf(e)) {
C a = r.leadingBaseCoefficient();
f = f.subtract(e);
h = S.multiplyLeft(f); // coeff a
C c = h.leadingBaseCoefficient();
// need ga, gc: ga a = gc c
C[] oc = fd.leftOreCond(a, c);
C ga = oc[0];
C gc = oc[1];
r = r.multiplyLeft(ga); // coeff ga a, exp f
h = h.multiplyLeft(gc); // coeff gc c, exp f
q = q.multiplyLeft(ga); // c
q = (GenSolvablePolynomial<C>) q.sum(gc, f); // a
//System.out.println("q = " + q);
r = (GenSolvablePolynomial<C>) r.subtract(h);
} else {
break;
}
}
int sp = P.signum();
int ss = S.signum();
int sq = q.signum();
// sp = ss * sq
if (sp != ss * sq) {
q = (GenSolvablePolynomial<C>) q.negate();
r = (GenSolvablePolynomial<C>) r.negate();
}
ret[0] = q;
ret[1] = r;
return ret;
}
示例14: rightBasePseudoQuotientRemainder
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GenSolvablePolynomial sparse pseudo quotient and remainder for univariate
* polynomials or exact division.
* @param <C> coefficient type.
* @param P GenSolvablePolynomial.
* @param S nonzero GenSolvablePolynomial.
* @return [ quotient, remainder ] with P ore(ldcf(S)<sup>m'</sup>) = S *
* quotient + remainder. m' ≤ deg(P)-deg(S)
* @see edu.jas.poly.GenPolynomial#divide(edu.jas.poly.GenPolynomial).
*/
@SuppressWarnings("unchecked")
public static <C extends GcdRingElem<C>> GenSolvablePolynomial<C>[] rightBasePseudoQuotientRemainder(
GenSolvablePolynomial<C> P, GenSolvablePolynomial<C> S) {
if (S == null || S.isZERO()) {
throw new ArithmeticException(P.toString() + " division by zero " + S);
}
//if (S.ring.nvar != 1) { // ok if exact division
// throw new RuntimeException("univariate polynomials only");
//}
GenSolvablePolynomial<C>[] ret = new GenSolvablePolynomial[2];
ret[0] = null;
ret[1] = null;
if (P.isZERO() || S.isONE()) {
ret[0] = P;
ret[1] = S.ring.getZERO();
return ret;
}
if (P instanceof RecSolvablePolynomial) {
RecSolvablePolynomial<C> Pr = (RecSolvablePolynomial) P;
if (!Pr.ring.coeffTable.isEmpty()) {
throw new UnsupportedOperationException(
"RecSolvablePolynomial with twisted coeffs not supported");
}
}
GreatestCommonDivisorAbstract<C> fd = new GreatestCommonDivisorFake<C>(P.ring.coFac);
ExpVector e = S.leadingExpVector();
GenSolvablePolynomial<C> h;
GenSolvablePolynomial<C> r = P;
GenSolvablePolynomial<C> q = S.ring.getZERO().copy();
while (!r.isZERO()) {
ExpVector f = r.leadingExpVector();
if (f.multipleOf(e)) {
C a = r.leadingBaseCoefficient();
f = f.subtract(e);
h = S.multiply(f); // coeff a
C c = h.leadingBaseCoefficient();
// need ga, gc: a ga = c gc
C[] oc = fd.rightOreCond(a, c);
C ga = oc[0];
C gc = oc[1];
r = r.multiply(ga); // coeff a ga, exp f
h = h.multiply(gc); // coeff c gc, exp f wanted but is exp f * coeff c gc, okay for base
q = q.multiply(ga); // c
q = (GenSolvablePolynomial<C>) q.sum(gc, f); // a
r = (GenSolvablePolynomial<C>) r.subtract(h);
} else {
break;
}
}
int sp = P.signum();
int ss = S.signum();
int sq = q.signum();
// sp = ss * sq
if (sp != ss * sq) {
q = (GenSolvablePolynomial<C>) q.negate();
r = (GenSolvablePolynomial<C>) r.negate();
}
ret[0] = q;
ret[1] = r;
return ret;
}
示例15: recursivePseudoQuotientRemainder
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GenSolvablePolynomial recursive pseudo quotient and remainder for
* recursive polynomials.
* @param <C> coefficient type.
* @param P recursive GenSolvablePolynomial.
* @param S nonzero recursive GenSolvablePolynomial.
* @return [ quotient, remainder ] with ore(ldcf(S)<sup>m'</sup>) P =
* quotient * S + remainder.
* @see edu.jas.poly.GenPolynomial#remainder(edu.jas.poly.GenPolynomial).
*/
@SuppressWarnings("unchecked")
public static <C extends GcdRingElem<C>> GenSolvablePolynomial<GenPolynomial<C>>[] recursivePseudoQuotientRemainder(
GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<GenPolynomial<C>> S) {
if (S == null || S.isZERO()) {
throw new ArithmeticException(P + " division by zero " + S);
}
//if (S.ring.nvar != 1) { // ok if exact division
// throw new RuntimeException("univariate polynomials only");
//}
GenSolvablePolynomial<GenPolynomial<C>>[] ret = new GenSolvablePolynomial[2];
if (P == null || P.isZERO()) {
ret[0] = S.ring.getZERO();
ret[1] = S.ring.getZERO();
return ret;
}
if (S.isONE()) {
ret[0] = P;
ret[1] = S.ring.getZERO();
return ret;
}
GenPolynomialRing<C> cofac = (GenPolynomialRing) P.ring.coFac;
GreatestCommonDivisorAbstract<C> fd = new GreatestCommonDivisorSimple<C>(cofac.coFac);
ExpVector e = S.leadingExpVector();
GenSolvablePolynomial<GenPolynomial<C>> h;
GenSolvablePolynomial<GenPolynomial<C>> r = P;
GenSolvablePolynomial<GenPolynomial<C>> q = S.ring.getZERO().copy();
while (!r.isZERO()) {
ExpVector g = r.leadingExpVector();
ExpVector f = g;
if (f.multipleOf(e)) {
f = f.subtract(e);
h = S.multiplyLeft(f); // coeff c, exp (f/e) e
GenSolvablePolynomial<C> a = (GenSolvablePolynomial<C>) r.leadingBaseCoefficient();
GenSolvablePolynomial<C> d = (GenSolvablePolynomial<C>) h.leadingBaseCoefficient();
GenSolvablePolynomial<C>[] oc = fd.leftOreCond(a, d);
GenPolynomial<C> ga = oc[0]; // d
GenPolynomial<C> gd = oc[1]; // a
// ga a = gd d
r = r.multiplyLeft(ga); // coeff ga a, exp f
h = h.multiplyLeft(gd); // coeff gd d, exp f
q = q.multiplyLeft(ga); // d
q = (GenSolvablePolynomial<GenPolynomial<C>>) q.sum(gd, f); // a
r = (GenSolvablePolynomial<GenPolynomial<C>>) r.subtract(h);
if (!r.isZERO() && g.equals(r.leadingExpVector())) {
throw new RuntimeException("degree not descending: r = " + r);
}
} else {
break;
}
}
int sp = P.signum();
int ss = S.signum();
int sq = q.signum();
// sp = ss * sq
if (sp != ss * sq) {
q = (GenSolvablePolynomial<GenPolynomial<C>>) q.negate();
r = (GenSolvablePolynomial<GenPolynomial<C>>) r.negate();
}
ret[0] = q;
ret[1] = r;
return ret;
}