本文整理匯總了Java中edu.jas.poly.ExpVector.compareTo方法的典型用法代碼示例。如果您正苦於以下問題:Java ExpVector.compareTo方法的具體用法?Java ExpVector.compareTo怎麽用?Java ExpVector.compareTo使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類edu.jas.poly.ExpVector
的用法示例。
在下文中一共展示了ExpVector.compareTo方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: isSigRedundant
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Is sigma redundant.
* @param A polynomial.
* @param G polynomial list.
* @return true if A is sigma redundant with respect to G.
*/
public boolean isSigRedundant(List<SigPoly<C>> G, SigPoly<C> A) {
if (G.isEmpty()) {
return false;
}
ExpVector e = A.sigma.leadingExpVector();
if (e == null) {
e = A.poly.ring.evzero;
}
for (SigPoly<C> p : G) {
if (p.sigma.isZERO()) {
continue;
}
ExpVector f = p.sigma.leadingExpVector();
if (f == null) { // does not happen
f = p.poly.ring.evzero;
}
boolean mt = e.multipleOf(f);
if (mt) {
ExpVector g = e.subtract(f);
ExpVector h = p.poly.leadingExpVector();
h = h.sum(g);
if (h.compareTo(A.poly.leadingExpVector()) == 0) {
return true;
}
}
}
return false;
}
示例2: criterion3
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GB criterium 3.
* @return true if the S-polynomial(i,j) is required.
*/
public boolean criterion3(int i, int j, ExpVector eij) {
// assert i < j;
boolean s;
s = red.get( j ).get(i);
if ( ! s ) {
logger.warn("c3.s false for " + j + " " + i);
return s;
}
s = true;
boolean m;
GenPolynomial<C> A;
ExpVector ek;
for ( int k = 0; k < P.size(); k++ ) {
A = P.get( k );
ek = A.leadingExpVector();
m = eij.multipleOf(ek) && eij.compareTo(ek) != 0;
if ( m ) {
if ( k < i ) {
// System.out.println("k < i "+k+" "+i);
s = red.get( i ).get(k)
|| red.get( j ).get(k);
}
if ( i < k && k < j ) {
// System.out.println("i < k < j "+i+" "+k+" "+j);
s = red.get( k ).get(i)
|| red.get( j ).get(k);
}
if ( j < k ) {
//System.out.println("j < k "+j+" "+k);
s = red.get( k ).get(i)
|| red.get( k ).get(j);
}
//System.out.println("s."+k+" = " + s);
if ( ! s ) return s;
}
}
return true;
}
示例3: recursiveDivide
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GenSolvablePolynomial left recursive quotient for recursive polynomials
* and exact division by coefficient ring element.
* @param <C> coefficient type.
* @param P recursive GenSolvablePolynomial.
* @param s GenSolvablePolynomial.
* @return this/s.
*/
@SuppressWarnings({ "unchecked", "cast" })
public static <C extends GcdRingElem<C>> GenSolvablePolynomial<GenPolynomial<C>> recursiveDivide(
GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) {
if (s == null || s.isZERO()) {
throw new ArithmeticException("division by zero " + P + ", " + s);
}
if (P.isZERO()) {
return P;
}
if (s.isONE()) {
return P;
}
GenSolvablePolynomialRing<GenPolynomial<C>> rfac = (GenSolvablePolynomialRing<GenPolynomial<C>>) P.ring;
GenSolvablePolynomial<GenPolynomial<C>> onep = rfac.getONE();
//ExpVector zero = rfac.evzero;
GenSolvablePolynomial<GenPolynomial<C>> q = rfac.getZERO();
GenSolvablePolynomial<GenPolynomial<C>> r;
GenSolvablePolynomial<GenPolynomial<C>> p = P; //.ring.getZERO().copy();
while (!p.isZERO()) {
// for (Map.Entry<ExpVector, GenPolynomial<C>> m1 : P.getMap().entrySet()) {
Map.Entry<ExpVector, GenPolynomial<C>> m1 = p.leadingMonomial();
GenSolvablePolynomial<C> c1 = (GenSolvablePolynomial<C>) m1.getValue();
ExpVector e1 = m1.getKey();
GenSolvablePolynomial<C> c = c1.divide(s);
if (c.isZERO()) {
throw new RuntimeException("something is wrong: c is zero, c1 = " + c1 + ", s = " + s);
}
r = onep.multiplyLeft(c.multiply(s), e1); // right: (c e1) * 1 * (s zero)
if (!c1.equals(r.leadingBaseCoefficient())) {
System.out.println("recRightDivide: lc(r) = " + r.leadingBaseCoefficient() + ", c1 = " + c1);
System.out.println("recRightDivide: lc(r) = " + c.multiply(s) + ", c = " + c + ", s = " + s);
throw new RuntimeException("something is wrong: lc(r) != c*s");
}
p = (RecSolvablePolynomial<C>) p.subtract(r);
if (!p.isZERO() && e1.compareTo(p.leadingExpVector()) == 0) {
System.out.println("recRightDivide: c = " + c);
System.out.println("recRightDivide: lt(p) = " + p.leadingExpVector() + ", e1 = " + e1);
System.out.println("recRightDivide: c1/s = " + c1.divide(s));
System.out.println("recRightDivide: s*c = " + s.multiply(c));
System.out.println("recRightDivide: c*s = " + c.multiply(s));
throw new RuntimeException("something is wrong: degree not descending");
}
q = (RecSolvablePolynomial<C>) q.sum(c, e1);
}
return q;
}
示例4: recursiveRightDivide
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GenSolvablePolynomial recursive quotient for recursive polynomials and
* partial right exact division by coefficient ring element.
* @param <C> coefficient type.
* @param P recursive GenSolvablePolynomial.
* @param s GenSolvablePolynomial.
* @return P/s.
*/
@SuppressWarnings({ "unchecked", "cast" })
public static <C extends GcdRingElem<C>> GenSolvablePolynomial<GenPolynomial<C>> recursiveRightDivide(
GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) {
if (s == null || s.isZERO()) {
throw new ArithmeticException("division by zero " + P + ", " + s);
}
if (P.isZERO()) {
return P;
}
if (s.isONE()) {
return P;
}
if (!(P instanceof RecSolvablePolynomial)) {
//return FDUtil.<C> recursiveDivide(P,s);
}
RecSolvablePolynomialRing<C> rfac = (RecSolvablePolynomialRing<C>) P.ring;
if (rfac.coeffTable.isEmpty()) {
//return FDUtil.<C> recursiveDivide(P,s);
}
RecSolvablePolynomial<C> onep = rfac.getONE();
//ExpVector zero = rfac.evzero;
RecSolvablePolynomial<C> q = rfac.getZERO();
RecSolvablePolynomial<C> r;
RecSolvablePolynomial<C> p = (RecSolvablePolynomial<C>) P;
//System.out.println("recRightDivide: p = " + p + ", s = " + s);
while (!p.isZERO()) {
Map.Entry<ExpVector, GenPolynomial<C>> m1 = p.leadingMonomial();
GenSolvablePolynomial<C> a = (GenSolvablePolynomial<C>) m1.getValue();
ExpVector f = m1.getKey();
GenSolvablePolynomial<C> c = (GenSolvablePolynomial<C>) a.rightDivide(s);
if (c.isZERO()) {
//logger.info("something is wrong: c is zero, a = " + a + ", s = " + s);
throw new RuntimeException("something is wrong: c is zero, a = " + a + ", s = " + s);
}
//r = onep.multiply(c, f, s, zero); // right: (c f) * 1 * (s zero)
///r = onep.multiply(c.multiply(s), f); //, c, zero); //
r = onep.multiply(s.multiply(c), f); //, c, zero); //
if (!a.equals(r.leadingBaseCoefficient())) {
System.out.println("recRightDivide: a = " + a + ", lc(r) = " + r.leadingBaseCoefficient());
System.out.println("recRightDivide: c*s = " + c.multiply(s) + ", s = " + s + ", c = " + c);
System.out.println(
"recRightDivide: s*c = " + s.multiply(c) + ", a%s = " + a.rightRemainder(s));
throw new RuntimeException("something is wrong: c*s != a: " + rfac.toScript());
}
p = (RecSolvablePolynomial<C>) p.subtract(r);
if (!p.isZERO() && f.compareTo(p.leadingExpVector()) == 0) {
System.out.println("recRightDivide: c = " + c);
System.out.println("recRightDivide: lt(p) = " + p.leadingExpVector() + ", f = " + f);
System.out.println("recRightDivide: a/s = " + a.divide(s));
System.out.println("recRightDivide: s*c = " + s.multiply(c));
System.out.println("recRightDivide: c*s = " + c.multiply(s));
throw new RuntimeException("something is wrong: degree not descending");
}
q = (RecSolvablePolynomial<C>) q.sum(c, f);
}
return q;
}
示例5: recursiveLeftDivide
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GenSolvablePolynomial recursive quotient for recursive polynomials and
* partial left exact division by coefficient ring element.
* @param <C> coefficient type.
* @param P recursive GenSolvablePolynomial.
* @param s GenSolvablePolynomial.
* @return P/s.
*/
@SuppressWarnings({ "unchecked", "cast" })
public static <C extends GcdRingElem<C>> GenSolvablePolynomial<GenPolynomial<C>> recursiveLeftDivide(
GenSolvablePolynomial<GenPolynomial<C>> P, GenSolvablePolynomial<C> s) {
if (s == null || s.isZERO()) {
throw new ArithmeticException("division by zero " + P + ", " + s);
}
if (P.isZERO()) {
return P;
}
if (s.isONE()) {
return P;
}
if (!(P instanceof RecSolvablePolynomial)) {
//return FDUtil.<C> recursiveDivide(P,s);
}
RecSolvablePolynomialRing<C> rfac = (RecSolvablePolynomialRing<C>) P.ring;
if (rfac.coeffTable.isEmpty()) {
//return FDUtil.<C> recursiveDivide(P,s);
}
RecSolvablePolynomial<C> onep = rfac.getONE();
//ExpVector zero = rfac.evzero;
RecSolvablePolynomial<C> q = rfac.getZERO();
RecSolvablePolynomial<C> r, Pp;
//RecSolvablePolynomial<C> p = (RecSolvablePolynomial<C>) P;
RecSolvablePolynomial<C> p = (RecSolvablePolynomial<C>) P.rightRecursivePolynomial();
Pp = p;
while (!p.isZERO()) {
ExpVector f = p.leadingExpVector();
GenSolvablePolynomial<C> a = (GenSolvablePolynomial<C>) p.leadingBaseCoefficient();
GenSolvablePolynomial<C> c = (GenSolvablePolynomial<C>) a.divide(s);
///GenSolvablePolynomial<C> c = (GenSolvablePolynomial<C>) a.rightDivide(s);
if (c.isZERO()) {
throw new RuntimeException("something is wrong: c is zero, a = " + a + ", s = " + s);
}
//r = onep.multiply(c, f, s, zero); // right: (c f) * 1 * (s zero)
r = onep.multiplyLeft(c.multiply(s), f); // right: (c*s f) * one
///r = onep.multiplyLeft(s.multiply(c), f); // left: (s*c f) * one
if (!a.equals(r.leadingBaseCoefficient())) {
System.out.println("recLeftDivide: a = " + a);
C ac = a.leadingBaseCoefficient();
C rc = r.leadingBaseCoefficient().leadingBaseCoefficient();
C cc = rc.inverse().multiply(ac);
System.out.println("recLeftDivide: cc = " + cc);
c = c.multiply(cc);
r = onep.multiplyLeft(c.multiply(s), f); // right: (c f) * 1 * (s zero)
///r = onep.multiplyLeft(s.multiply(c), f); // left: (s*c f) * 1
System.out.println("recLeftDivide: lc(r) = " + r.leadingBaseCoefficient());
throw new RuntimeException("something is wrong: c*s != a: " + rfac.toScript());
}
p = (RecSolvablePolynomial<C>) p.subtract(r);
if (!p.isZERO() && f.compareTo(p.leadingExpVector()) == 0) {
System.out.println("recLeftDivide: P = " + P + ", s = " + s);
System.out.println("recLeftDivide: right(P) = " + Pp);
System.out.println("recLeftDivide: c = " + c);
System.out.println("recLeftDivide: lt(p) = " + p.leadingExpVector() + ", f = " + f);
System.out.println("recLeftDivide: a/s = " + a.divide(s));
System.out.println("recLeftDivide: a\\s = " + a.rightDivide(s));
System.out.println("recLeftDivide: s*c = " + s.multiply(c));
System.out.println("recLeftDivide: c*s = " + c.multiply(s));
throw new RuntimeException("something is wrong: degree not descending");
}
q = (RecSolvablePolynomial<C>) q.sum(c, f);
}
q = (RecSolvablePolynomial<C>) q.evalAsRightRecursivePolynomial();
return q;
}
示例6: sigNormalform
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Top normalform.
* @param A polynomial.
* @param F polynomial list.
* @param G polynomial list.
* @return nf(A) with respect to F and G.
*/
public SigPoly<C> sigNormalform(List<GenPolynomial<C>> F, List<SigPoly<C>> G, SigPoly<C> A) {
if (F.isEmpty() && G.isEmpty()) {
return A;
}
if (A.poly.isZERO()) {
return A;
}
List<GenPolynomial<C>> ff = F; //polys(F);
GenPolynomial<C> a = A.poly;
GenPolynomial<C> sigma = A.sigma;
GenPolynomialRing<C> ring = a.ring;
boolean reduced = true;
while (!a.isZERO() && reduced) {
reduced = false;
a = red.normalform(ff, a);
if (a.isZERO()) {
continue;
}
ExpVector e = a.leadingExpVector();
for (SigPoly<C> p : G) {
if (p.poly.isZERO()) {
continue;
}
ExpVector f = p.poly.leadingExpVector();
boolean mt = e.multipleOf(f);
if (mt) {
ExpVector g = e.subtract(f);
C sc = a.leadingBaseCoefficient().divide(p.poly.leadingBaseCoefficient());
GenPolynomial<C> sigup = p.sigma.multiply(sc, g);
ExpVector se = sigma.leadingExpVector();
if (se == null) {
se = ring.evzero;
}
ExpVector sp = sigup.leadingExpVector();
if (sp == null) {
sp = ring.evzero;
}
//logger.info("sigup, sigma = " + sigup + ", " + sigma);
boolean sigeq = (sigup.compareTo(sigma) < 0)
|| ((sp.compareTo(se) == 0 && (sigup.leadingBaseCoefficient().compareTo(
sigma.leadingBaseCoefficient()) != 0)));
//logger.info("sigup < sigma = " + sigup.compareTo(sigma));
if (sigeq) {
reduced = true;
a = a.subtractMultiple(sc, g, p.poly);
if (sp.invGradCompareTo(se) == 0) {
sigma = sigma.subtract(sigup);
}
if (a.isZERO()) {
break;
}
e = a.leadingExpVector();
} else {
//logger.info("not reduced: a = " + a + ", p = " + p.poly);
}
}
}
}
if (!a.isZERO()) {
C ac = a.leadingBaseCoefficient();
if (!ac.isONE()) {
ac = ac.inverse();
a = a.multiply(ac);
sigma = sigma.multiply(ac);
}
}
return new SigPoly<C>(sigma, a);
}
示例7: sigSemiNormalform
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Top semi-complete normalform.
* @param A polynomial.
* @param F polynomial list.
* @param G polynomial list.
* @return nf(A) with respect to F and G.
*/
public SigPoly<C> sigSemiNormalform(List<GenPolynomial<C>> F, List<SigPoly<C>> G, SigPoly<C> A) {
if (F.isEmpty() && G.isEmpty()) {
return A;
}
if (A.poly.isZERO()) {
return A;
}
List<GenPolynomial<C>> ff = F; //polys(F);
GenPolynomial<C> a = A.poly;
GenPolynomial<C> sigma = A.sigma;
ExpVector esig = sigma.leadingExpVector();
if (esig == null) {
logger.info("esig = null");
//esig = a.ring.evzero;
}
//GenPolynomialRing<C> ring = a.ring;
boolean reduced = true;
while (!a.isZERO() && reduced) {
reduced = false;
a = red.normalform(ff, a);
if (a.isZERO()) {
continue;
}
ExpVector e = a.leadingExpVector();
for (SigPoly<C> p : G) {
if (p.poly.isZERO()) {
continue;
}
ExpVector f = p.poly.leadingExpVector();
boolean mt = e.multipleOf(f);
if (mt) {
ExpVector g = e.subtract(f);
C sc = a.leadingBaseCoefficient().divide(p.poly.leadingBaseCoefficient());
GenPolynomial<C> sigup = p.sigma.multiply(sc, g);
ExpVector eup = sigup.leadingExpVector();
if (eup == null) {
logger.info("eup = null");
//eup = a.ring.evzero;
throw new IllegalArgumentException("eup == null: " + sigup);
}
//wrong: boolean sigeq = (sigup.compareTo(sigma) < 0);
boolean sigeq = (eup.compareTo(esig) < 0);
if (sigeq) {
//logger.info("reduced: sigup = " + sigup + ", sigma = " + sigma);
reduced = true;
a = a.subtractMultiple(sc, g, p.poly);
if (a.isZERO()) {
break;
}
e = a.leadingExpVector();
} else {
//logger.info("not reduced: a = " + a + ", p = " + p.poly);
}
}
}
}
if (!a.isZERO()) {
C ac = a.leadingBaseCoefficient();
if (!ac.isONE()) {
ac = ac.inverse();
a = a.multiply(ac);
}
}
return new SigPoly<C>(sigma, a);
}