本文整理匯總了Java中edu.jas.poly.ExpVector.multipleOf方法的典型用法代碼示例。如果您正苦於以下問題:Java ExpVector.multipleOf方法的具體用法?Java ExpVector.multipleOf怎麽用?Java ExpVector.multipleOf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類edu.jas.poly.ExpVector
的用法示例。
在下文中一共展示了ExpVector.multipleOf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: pruneP
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Prune total pair list P.
* @param P pair list.
* @param syz list of exponent vectors representing syzygies.
* @return updated pair list. <b>Note:<b> stores polynomials not only
* indices.
*/
@Override
List<SigPair<C>> pruneP(List<SigPair<C>> P, List<ExpVector> syz) {
List<SigPair<C>> res = new ArrayList<SigPair<C>>(P.size());
for (SigPair<C> p : P) {
ExpVector f = p.sigma.leadingExpVector();
if (f == null) {
continue;
}
boolean div = false;
for (ExpVector e : syz) {
if (f.multipleOf(e)) {
div = true;
break;
}
}
if (div) {
continue;
}
res.add(p);
}
return res;
}
示例2: pruneP
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Prune total pair list P.
* @param P pair list.
* @param syz list of exponent vectors representing syzygies.
* @return updated pair list.
*/
@Override
List<SigPair<C>> pruneP(List<SigPair<C>> P, List<ExpVector> syz) {
List<SigPair<C>> res = new ArrayList<SigPair<C>>(P.size());
for (SigPair<C> p : P) {
ExpVector f = p.sigma.leadingExpVector();
if (f == null) {
continue;
}
boolean div = false;
for (ExpVector e : syz) {
if (f.multipleOf(e)) {
div = true;
break;
}
}
if (div) {
continue;
}
res.add(p);
}
return res;
}
示例3: isTopReducible
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Is top reducible.
* @param A polynomial.
* @param P polynomial list.
* @return true if A is top reducible with respect to P.
*/
//SuppressWarnings("unchecked") // not jet working
@Override
public boolean isTopReducible(List<GenPolynomial<C>> P, GenPolynomial<C> A) {
if (P == null || P.isEmpty()) {
return false;
}
if (A == null || A.isZERO()) {
return false;
}
boolean mt = false;
ExpVector e = A.leadingExpVector();
C a = A.leadingBaseCoefficient();
for (GenPolynomial<C> p : P) {
mt = e.multipleOf(p.leadingExpVector());
if (mt) {
C b = p.leadingBaseCoefficient();
C r = a.remainder(b);
mt = !r.equals(a);
if (mt) {
return true;
}
}
}
return false;
}
示例4: criterion3
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GB criterion 3.
* @return true if the S-power-series(i,j) is required.
*/
public boolean criterion3(int i, int j, ExpVector eij) {
// assert i < j;
boolean s = red.get(j).get(i);
if (!s) {
logger.warn("c3.s false for " + j + " " + i);
return s;
}
// now s = true;
for (int k = 0; k < P.size(); k++) {
MultiVarPowerSeries<C> A = P.get(k);
ExpVector ek = A.orderExpVector();
boolean m = eij.multipleOf(ek);
if (m) {
if (k < i) {
// System.out.println("k < i "+k+" "+i);
s = red.get(i).get(k) || red.get(j).get(k);
} else if (i < k && k < j) {
// System.out.println("i < k < j "+i+" "+k+" "+j);
s = red.get(k).get(i) || red.get(j).get(k);
} else if (j < k) {
//System.out.println("j < k "+j+" "+k);
s = red.get(k).get(i) || red.get(k).get(j);
}
//System.out.println("s."+k+" = " + s);
if (!s) {
return s;
}
}
}
return true;
}
示例5: isSigRedundantAlt
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Is sigma redundant, alternative algorithm.
* @param A polynomial.
* @param G polynomial list.
* @return true if A is sigma redundant per alternative algorithm with
* respect to G.
*/
public boolean isSigRedundantAlt(List<SigPoly<C>> G, SigPoly<C> A) {
if (G.isEmpty()) {
return false;
}
ExpVector e = A.sigma.leadingExpVector();
if (e == null) {
e = A.poly.ring.evzero;
}
for (SigPoly<C> p : G) {
if (p.sigma.isZERO()) {
continue;
}
ExpVector f = p.sigma.leadingExpVector();
if (f == null) { // does not happen
f = p.poly.ring.evzero;
}
boolean mt = e.multipleOf(f);
if (mt) {
if (p.poly.isZERO()) {
continue;
}
ExpVector h = p.poly.leadingExpVector();
ExpVector g = A.poly.leadingExpVector();
if (g.multipleOf(h)) {
return true;
}
}
}
return false;
}
示例6: isSigRedundant
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Is sigma redundant.
* @param A polynomial.
* @param G polynomial list.
* @return true if A is sigma redundant with respect to G.
*/
public boolean isSigRedundant(List<SigPoly<C>> G, SigPoly<C> A) {
if (G.isEmpty()) {
return false;
}
ExpVector e = A.sigma.leadingExpVector();
if (e == null) {
e = A.poly.ring.evzero;
}
for (SigPoly<C> p : G) {
if (p.sigma.isZERO()) {
continue;
}
ExpVector f = p.sigma.leadingExpVector();
if (f == null) { // does not happen
f = p.poly.ring.evzero;
}
boolean mt = e.multipleOf(f);
if (mt) {
ExpVector g = e.subtract(f);
ExpVector h = p.poly.leadingExpVector();
h = h.sum(g);
if (h.compareTo(A.poly.leadingExpVector()) == 0) {
return true;
}
}
}
return false;
}
示例7: criterion3
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GB criterium 3.
* @return true if the S-polynomial(i,j) is required.
*/
public boolean criterion3(int i, int j, ExpVector eij) {
// assert i < j;
boolean s = red.get(j).get(i);
if (!s) {
logger.warn("c3.s false for " + j + " " + i);
return s;
}
// now s = true;
for (int k = 0; k < P.size(); k++) {
// System.out.println("i , k , j "+i+" "+k+" "+j);
if (i != k && j != k) {
GenPolynomial<C> A = P.get(k);
ExpVector ek = A.leadingExpVector();
boolean m = eij.multipleOf(ek);
if (m) {
if (k < i) {
// System.out.println("k < i "+k+" "+i);
s = red.get(i).get(k) || red.get(j).get(k);
} else if (i < k && k < j) {
// System.out.println("i < k < j "+i+" "+k+" "+j);
s = red.get(k).get(i) || red.get(j).get(k);
} else if (j < k) {
//System.out.println("j < k "+j+" "+k);
s = red.get(k).get(i) || red.get(k).get(j);
}
//System.out.println("s."+k+" = " + s);
if (!s) {
return s;
}
}
}
}
return true;
}
示例8: criterion3
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GB criterium 3.
* @return true if the S-polynomial(i,j) is required.
*/
public boolean criterion3(int i, int j, ExpVector eij) {
// assert i < j;
boolean s;
s = red.get( j ).get(i);
if ( ! s ) {
logger.warn("c3.s false for " + j + " " + i);
return s;
}
s = true;
boolean m;
GenPolynomial<C> A;
ExpVector ek;
for ( int k = 0; k < P.size(); k++ ) {
A = P.get( k );
ek = A.leadingExpVector();
m = eij.multipleOf(ek) && eij.compareTo(ek) != 0;
if ( m ) {
if ( k < i ) {
// System.out.println("k < i "+k+" "+i);
s = red.get( i ).get(k)
|| red.get( j ).get(k);
}
if ( i < k && k < j ) {
// System.out.println("i < k < j "+i+" "+k+" "+j);
s = red.get( k ).get(i)
|| red.get( j ).get(k);
}
if ( j < k ) {
//System.out.println("j < k "+j+" "+k);
s = red.get( k ).get(i)
|| red.get( k ).get(j);
}
//System.out.println("s."+k+" = " + s);
if ( ! s ) return s;
}
}
return true;
}
示例9: isNormalform
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Is in Normalform. Is left right symmetric.
* @param Ap polynomial.
* @param Pp polynomial list.
* @return true if Ap is in normalform with respect to Pp.
*/
@SuppressWarnings("unchecked")
public boolean isNormalform(List<GenSolvablePolynomial<C>> Pp, GenSolvablePolynomial<C> Ap) {
if (Pp == null || Pp.isEmpty()) {
return true;
}
if (Ap == null || Ap.isZERO()) {
return true;
}
GenSolvablePolynomial<C>[] P = new GenSolvablePolynomial[0];
synchronized (Pp) {
P = Pp.toArray(P);
}
int l = P.length;
ExpVector[] htl = new ExpVector[l];
GenSolvablePolynomial<C>[] p = new GenSolvablePolynomial[l];
ExpVector f;
int i;
int j = 0;
for (i = 0; i < l; i++) {
p[i] = P[i];
f = p[i].leadingExpVector();
if (f != null) {
p[j] = p[i];
htl[j] = f;
j++;
}
}
l = j;
boolean mt = false;
for (ExpVector e : Ap.getMap().keySet()) {
for (i = 0; i < l; i++) {
mt = e.multipleOf(htl[i]);
if (mt) {
return false;
}
}
}
return true;
}
示例10: sigSemiNormalform
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Top semi-complete normalform.
* @param A polynomial.
* @param F polynomial list.
* @param G polynomial list.
* @return nf(A) with respect to F and G.
*/
public SigPoly<C> sigSemiNormalform(List<GenPolynomial<C>> F, List<SigPoly<C>> G, SigPoly<C> A) {
if (F.isEmpty() && G.isEmpty()) {
return A;
}
if (A.poly.isZERO()) {
return A;
}
List<GenPolynomial<C>> ff = F; //polys(F);
GenPolynomial<C> a = A.poly;
GenPolynomial<C> sigma = A.sigma;
ExpVector esig = sigma.leadingExpVector();
if (esig == null) {
logger.info("esig = null");
//esig = a.ring.evzero;
}
//GenPolynomialRing<C> ring = a.ring;
boolean reduced = true;
while (!a.isZERO() && reduced) {
reduced = false;
a = red.normalform(ff, a);
if (a.isZERO()) {
continue;
}
ExpVector e = a.leadingExpVector();
for (SigPoly<C> p : G) {
if (p.poly.isZERO()) {
continue;
}
ExpVector f = p.poly.leadingExpVector();
boolean mt = e.multipleOf(f);
if (mt) {
ExpVector g = e.subtract(f);
C sc = a.leadingBaseCoefficient().divide(p.poly.leadingBaseCoefficient());
GenPolynomial<C> sigup = p.sigma.multiply(sc, g);
ExpVector eup = sigup.leadingExpVector();
if (eup == null) {
logger.info("eup = null");
//eup = a.ring.evzero;
throw new IllegalArgumentException("eup == null: " + sigup);
}
//wrong: boolean sigeq = (sigup.compareTo(sigma) < 0);
boolean sigeq = (eup.compareTo(esig) < 0);
if (sigeq) {
//logger.info("reduced: sigup = " + sigup + ", sigma = " + sigma);
reduced = true;
a = a.subtractMultiple(sc, g, p.poly);
if (a.isZERO()) {
break;
}
e = a.leadingExpVector();
} else {
//logger.info("not reduced: a = " + a + ", p = " + p.poly);
}
}
}
}
if (!a.isZERO()) {
C ac = a.leadingBaseCoefficient();
if (!ac.isONE()) {
ac = ac.inverse();
a = a.multiply(ac);
}
}
return new SigPoly<C>(sigma, a);
}
示例11: minimalGB
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Minimal ordered groebner basis.
* @param Fp a Groebner base.
* @return a reduced Groebner base of Fp.
*/
@Override
public List<GenPolynomial<C>> minimalGB(List<GenPolynomial<C>> Fp) {
GenPolynomial<C> a;
ArrayList<GenPolynomial<C>> G;
G = new ArrayList<GenPolynomial<C>>(Fp.size());
ListIterator<GenPolynomial<C>> it = Fp.listIterator();
while (it.hasNext()) {
a = it.next();
if (a.length() != 0) { // always true
// already monic a = a.monic();
G.add(a);
}
}
if (G.size() <= 1) {
return G;
}
ExpVector e;
ExpVector f;
GenPolynomial<C> p;
ArrayList<GenPolynomial<C>> F;
F = new ArrayList<GenPolynomial<C>>(G.size());
boolean mt;
while (G.size() > 0) {
a = G.remove(0);
e = a.leadingExpVector();
it = G.listIterator();
mt = false;
while (it.hasNext() && !mt) {
p = it.next();
f = p.leadingExpVector();
mt = e.multipleOf(f);
}
it = F.listIterator();
while (it.hasNext() && !mt) {
p = it.next();
f = p.leadingExpVector();
mt = e.multipleOf(f);
}
if (!mt) {
F.add(a);
} else {
// System.out.println("dropped " + a.length());
}
}
G = F;
if (G.size() <= 1) {
return G;
}
Collections.reverse(G); // important for lex GB
@SuppressWarnings("cast")
MiReducerServer<C>[] mirs = (MiReducerServer<C>[]) new MiReducerServer[G.size()];
int i = 0;
F = new ArrayList<GenPolynomial<C>>(G.size());
while (G.size() > 0) {
a = G.remove(0);
// System.out.println("doing " + a.length());
List<GenPolynomial<C>> R = new ArrayList<GenPolynomial<C>>(G.size() + F.size());
R.addAll(G);
R.addAll(F);
mirs[i] = new MiReducerServer<C>(R, a);
pool.addJob(mirs[i]);
i++;
F.add(a);
}
G = F;
F = new ArrayList<GenPolynomial<C>>(G.size());
for (i = 0; i < mirs.length; i++) {
a = mirs[i].getNF();
F.add(a);
}
return F;
}
示例12: minimalGB
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Minimal ordered groebner basis.
* @param Fp a Groebner base.
* @return a reduced Groebner base of Fp.
*/
@SuppressWarnings("cast")
@Override
public List<GenPolynomial<C>> minimalGB(List<GenPolynomial<C>> Fp) {
GenPolynomial<C> a;
ArrayList<GenPolynomial<C>> G;
G = new ArrayList<GenPolynomial<C>>(Fp.size());
ListIterator<GenPolynomial<C>> it = Fp.listIterator();
while (it.hasNext()) {
a = it.next();
if (a.length() != 0) { // always true
// already monic a = a.monic();
G.add(a);
}
}
if (G.size() <= 1) {
return G;
}
ExpVector e;
ExpVector f;
GenPolynomial<C> p;
ArrayList<GenPolynomial<C>> F;
F = new ArrayList<GenPolynomial<C>>(G.size());
boolean mt;
while (G.size() > 0) {
a = G.remove(0);
e = a.leadingExpVector();
it = G.listIterator();
mt = false;
while (it.hasNext() && !mt) {
p = it.next();
f = p.leadingExpVector();
mt = e.multipleOf(f);
}
it = F.listIterator();
while (it.hasNext() && !mt) {
p = it.next();
f = p.leadingExpVector();
mt = e.multipleOf(f);
}
if (!mt) {
F.add(a);
} else {
// System.out.println("dropped " + a.length());
}
}
G = F;
if (G.size() <= 1) {
return G;
}
Collections.reverse(G); // important for lex GB
MiMPJReducerServer<C>[] mirs = (MiMPJReducerServer<C>[]) new MiMPJReducerServer[G.size()];
int i = 0;
F = new ArrayList<GenPolynomial<C>>(G.size());
while (G.size() > 0) {
a = G.remove(0);
// System.out.println("doing " + a.length());
List<GenPolynomial<C>> R = new ArrayList<GenPolynomial<C>>(G.size() + F.size());
R.addAll(G);
R.addAll(F);
mirs[i] = new MiMPJReducerServer<C>(R, a);
pool.addJob(mirs[i]);
i++;
F.add(a);
}
G = F;
F = new ArrayList<GenPolynomial<C>>(G.size());
for (i = 0; i < mirs.length; i++) {
a = mirs[i].getNF();
F.add(a);
}
return F;
}
示例13: criterion3
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GB criterium 3 with coefficient division test.
* @return true if the S-polynomial(i,j) is required.
*/
@Override
public boolean criterion3(int i, int j, ExpVector eij) {
// assert i < j;
boolean s;
s = red.get( j ).get(i);
if ( ! s ) {
logger.warn("c3.s false for " + j + " " + i);
return s;
}
s = true;
boolean m;
GenPolynomial<C> A;
ExpVector ek;
C ci = P.get(i).leadingBaseCoefficient();
C cj = P.get(j).leadingBaseCoefficient();
C c = ci.gcd(cj);
for ( int k = 0; k < P.size(); k++ ) {
A = P.get( k );
ek = A.leadingExpVector();
m = eij.multipleOf(ek);
if ( m ) {
C ck = A.leadingBaseCoefficient();
C r = c.remainder(ck);
m = r.isZERO();
}
if ( m ) {
if ( k < i ) {
// System.out.println("k < i "+k+" "+i);
s = red.get( i ).get(k)
|| red.get( j ).get(k);
}
if ( i < k && k < j ) {
// System.out.println("i < k < j "+i+" "+k+" "+j);
s = red.get( k ).get(i)
|| red.get( j ).get(k);
}
if ( j < k ) {
//System.out.println("j < k "+j+" "+k);
s = red.get( k ).get(i)
|| red.get( k ).get(j);
}
//System.out.println("s."+k+" = " + s);
if ( ! s ) return s;
}
}
return true;
}
示例14: minimalGB
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Minimal ordered groebner basis, parallel.
* @param Fp a Groebner base.
* @return minimalGB(F) a minimal Groebner base of Fp.
*/
@Override
public List<GenPolynomial<C>> minimalGB(List<GenPolynomial<C>> Fp) {
GenPolynomial<C> a;
ArrayList<GenPolynomial<C>> G;
G = new ArrayList<GenPolynomial<C>>(Fp.size());
ListIterator<GenPolynomial<C>> it = Fp.listIterator();
while (it.hasNext()) {
a = it.next();
if (a.length() != 0) { // always true
// already monic a = a.monic();
G.add(a);
}
}
if (G.size() <= 1) {
return G;
}
ExpVector e;
ExpVector f;
GenPolynomial<C> p;
ArrayList<GenPolynomial<C>> F;
F = new ArrayList<GenPolynomial<C>>(G.size());
boolean mt;
while (G.size() > 0) {
a = G.remove(0);
e = a.leadingExpVector();
it = G.listIterator();
mt = false;
while (it.hasNext() && !mt) {
p = it.next();
f = p.leadingExpVector();
mt = e.multipleOf(f);
}
it = F.listIterator();
while (it.hasNext() && !mt) {
p = it.next();
f = p.leadingExpVector();
mt = e.multipleOf(f);
}
if (!mt) {
F.add(a); // no thread at this point
} else {
// System.out.println("dropped " + a.length());
}
}
G = F;
if (G.size() <= 1) {
return G;
}
Collections.reverse(G); // important for lex GB
@SuppressWarnings("cast")
MiReducerIter<C>[] mirs = (MiReducerIter<C>[]) new MiReducerIter[G.size()];
int i = 0;
F = new ArrayList<GenPolynomial<C>>(G.size());
while (G.size() > 0) {
a = G.remove(0);
List<GenPolynomial<C>> R = new ArrayList<GenPolynomial<C>>(G.size() + F.size());
R.addAll(G);
R.addAll(F);
// System.out.println("doing " + a.length());
mirs[i] = new MiReducerIter<C>(R, a);
pool.addJob(mirs[i]);
i++;
F.add(a);
}
G = F;
F = new ArrayList<GenPolynomial<C>>(G.size());
for (i = 0; i < mirs.length; i++) {
a = mirs[i].getNF();
F.add(a);
}
return F;
}
示例15: minimalGB
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Minimal ordered groebner basis.
* @param Fp a Groebner base.
* @return a reduced Groebner base of Fp.
*/
@SuppressWarnings("cast")
@Override
public List<GenPolynomial<C>> minimalGB(List<GenPolynomial<C>> Fp) {
GenPolynomial<C> a;
ArrayList<GenPolynomial<C>> G;
G = new ArrayList<GenPolynomial<C>>(Fp.size());
ListIterator<GenPolynomial<C>> it = Fp.listIterator();
while (it.hasNext()) {
a = it.next();
if (a.length() != 0) { // always true
// already monic a = a.monic();
G.add(a);
}
}
if (G.size() <= 1) {
return G;
}
ExpVector e;
ExpVector f;
GenPolynomial<C> p;
ArrayList<GenPolynomial<C>> F;
F = new ArrayList<GenPolynomial<C>>(G.size());
boolean mt;
while (G.size() > 0) {
a = G.remove(0);
e = a.leadingExpVector();
it = G.listIterator();
mt = false;
while (it.hasNext() && !mt) {
p = it.next();
f = p.leadingExpVector();
mt = e.multipleOf(f);
}
it = F.listIterator();
while (it.hasNext() && !mt) {
p = it.next();
f = p.leadingExpVector();
mt = e.multipleOf(f);
}
if (!mt) {
F.add(a);
} else {
// System.out.println("dropped " + a.length());
}
}
G = F;
if (G.size() <= 1) {
return G;
}
Collections.reverse(G); // important for lex GB
MiMPIReducerServer<C>[] mirs = (MiMPIReducerServer<C>[]) new MiMPIReducerServer[G.size()];
int i = 0;
F = new ArrayList<GenPolynomial<C>>(G.size());
while (G.size() > 0) {
a = G.remove(0);
// System.out.println("doing " + a.length());
List<GenPolynomial<C>> R = new ArrayList<GenPolynomial<C>>(G.size() + F.size());
R.addAll(G);
R.addAll(F);
mirs[i] = new MiMPIReducerServer<C>(R, a);
pool.addJob(mirs[i]);
i++;
F.add(a);
}
G = F;
F = new ArrayList<GenPolynomial<C>>(G.size());
for (i = 0; i < mirs.length; i++) {
a = mirs[i].getNF();
F.add(a);
}
return F;
}