當前位置: 首頁>>代碼示例>>Java>>正文


Java ExpVector類代碼示例

本文整理匯總了Java中edu.jas.poly.ExpVector的典型用法代碼示例。如果您正苦於以下問題:Java ExpVector類的具體用法?Java ExpVector怎麽用?Java ExpVector使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


ExpVector類屬於edu.jas.poly包,在下文中一共展示了ExpVector類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: jasToPoly

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * Transforms a JAS polynomial to a Polynomial object.
 * 
 * @param j JAS polynomial
 * @return polynomial of Polynomial class
 */
private Polynomial jasToPoly(GenPolynomial<BigInteger> j)
{
	int numVariables = j.numberOfVariables();
	Polynomial result = new Polynomial(numVariables, j.length());
	for (Monomial<BigInteger> jasMono : j) {
		java.math.BigInteger coeff = (jasMono.coefficient()).getVal();
		ExpVector jasExpo = jasMono.exponent();
		ArrayList<Integer> expo = new ArrayList<Integer>();
		for (int var = 0; var < numVariables; var++) {
			expo.add((int)jasExpo.getVal(var));
		}
		result.addTerm(coeff, expo);
	}
	
	return result;
}
 
開發者ID:musaeed,項目名稱:Prism-gsoc16,代碼行數:23,代碼來源:JasFunction.java

示例2: fromProduct

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * From product representation.
 * @param <C> coefficient type.
 * @param pfac polynomial ring factory.
 * @param P polynomial to be converted from product representation.
 * @param i index of product representation to be taken.
 * @return Represenation of i-slice of P in the polynomial ring pfac.
 */
public static <C extends GcdRingElem<C>> GenPolynomial<GenPolynomial<C>> fromProduct(
                GenPolynomialRing<GenPolynomial<C>> pfac, GenPolynomial<Product<Residue<C>>> P, int i) {

    GenPolynomial<GenPolynomial<C>> b = pfac.getZERO().copy();
    if (P == null || P.isZERO()) {
        return b;
    }

    for (Map.Entry<ExpVector, Product<Residue<C>>> y : P.getMap().entrySet()) {
        ExpVector e = y.getKey();
        Product<Residue<C>> a = y.getValue();
        Residue<C> r = a.get(i);
        if (r != null && !r.isZERO()) {
            GenPolynomial<C> p = r.val;
            if (!p.isZERO()) {
                b.doPutToMap(e, p);
            }
        }
    }
    return b;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:30,代碼來源:PolyUtilApp.java

示例3: multiply

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * ColorPolynomial multiplication by monomial.
 * @param s Coefficient.
 * @param e Expvector.
 * @return this * (c t).
 */
public ColorPolynomial<C> multiply(GenPolynomial<C> s, ExpVector e) {
    GenPolynomial<GenPolynomial<C>> g, r, w;
    if (green instanceof GenSolvablePolynomial) {
        logger.info("use left multiplication");
        GenSolvablePolynomial<GenPolynomial<C>> gs, rs, ws;
        gs = (GenSolvablePolynomial<GenPolynomial<C>>) green;
        rs = (GenSolvablePolynomial<GenPolynomial<C>>) red;
        ws = (GenSolvablePolynomial<GenPolynomial<C>>) white;
        g = gs.multiplyLeft(s, e);
        r = rs.multiplyLeft(s, e);
        w = ws.multiplyLeft(s, e);
    } else {
        g = green.multiply(s, e);
        r = red.multiply(s, e);
        w = white.multiply(s, e);
    }
    return new ColorPolynomial<C>(g, r, w);
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:25,代碼來源:ColorPolynomial.java

示例4: toPolyCoefficients

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * Integral function from rational polynomial coefficients. Represent as
 * polynomial with type GenSolvablePolynomial<C> coefficients.
 * @param A polynomial with rational polynomial coefficients to be
 *            converted.
 * @return polynomial with type GenSolvablePolynomial<C> coefficients.
 */
public RecSolvablePolynomial<C> toPolyCoefficients(LocalSolvablePolynomial<C> A) {
    RecSolvablePolynomial<C> B = polCoeff.getZERO().copy();
    if (A == null || A.isZERO()) {
        return B;
    }
    for (Map.Entry<ExpVector, SolvableLocal<C>> y : A.getMap().entrySet()) {
        ExpVector e = y.getKey();
        SolvableLocal<C> a = y.getValue();
        if (!a.den.isONE()) {
            throw new IllegalArgumentException("den != 1 not supported: " + a);
        }
        GenPolynomial<C> p = a.num; // can not be zero
        if (!p.isZERO()) {
            //B = B.sum( p, e ); // inefficient
            B.doPutToMap(e, p);
        }
    }
    return B;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:27,代碼來源:LocalSolvablePolynomialRing.java

示例5: OrderedCPairlist

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * Constructor for OrderedPairlist.
 * @param m number of module variables.
 * @param r polynomial factory.
 */
public OrderedCPairlist(int m, GenPolynomialRing<GenPolynomial<C>> r) {
    moduleVars = m;
    ring = r;
    P = new ArrayList<ColorPolynomial<C>>();
    pairlist = new TreeMap<ExpVector, LinkedList<CPair<C>>>(ring.tord.getAscendComparator());
    // pairlist = new TreeMap( to.getSugarComparator() );
    red = new ArrayList<BitSet>();
    putCount = 0;
    remCount = 0;
    if (ring instanceof GenSolvablePolynomialRing) {
        useCriterion4 = false;
    }
    RingFactory<GenPolynomial<C>> rf = ring.coFac;
    GenPolynomialRing<C> cf = (GenPolynomialRing<C>) rf;
    reduction = new CReductionSeq<C>(cf.coFac);
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:22,代碼來源:OrderedCPairlist.java

示例6: multiply

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * QuotSolvablePolynomial left and right multiplication. Product with ring
 * element and exponent vector.
 * @param b coefficient polynomial.
 * @param e exponent.
 * @param c coefficient polynomial.
 * @param f exponent.
 * @return b x<sup>e</sup> * this * c x<sup>f</sup>, where * denotes
 *         solvable multiplication.
 */
@Override
public QuotSolvablePolynomial<C> multiply(SolvableQuotient<C> b, ExpVector e, SolvableQuotient<C> c,
                ExpVector f) {
    if (b == null || b.isZERO()) {
        return ring.getZERO();
    }
    if (c == null || c.isZERO()) {
        return ring.getZERO();
    }
    if (b.isONE() && e.isZERO() && c.isONE() && f.isZERO()) {
        return this;
    }
    QuotSolvablePolynomial<C> Cp = new QuotSolvablePolynomial<C>(ring, b, e);
    QuotSolvablePolynomial<C> Dp = new QuotSolvablePolynomial<C>(ring, c, f);
    return multiply(Cp, Dp);
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:27,代碼來源:QuotSolvablePolynomial.java

示例7: toPolyCoefficients

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * Integral function from solvable residue coefficients. Represent as
 * polynomial with type GenSolvablePolynomial<C> coefficients.
 * @param A polynomial with solvable residue coefficients to be converted.
 * @return polynomial with type GenSolvablePolynomial<C> coefficients.
 */
public RecSolvablePolynomial<C> toPolyCoefficients(ResidueSolvablePolynomial<C> A) {
    RecSolvablePolynomial<C> B = polCoeff.getZERO().copy();
    if (A == null || A.isZERO()) {
        return B;
    }
    for (Map.Entry<ExpVector, SolvableResidue<C>> y : A.getMap().entrySet()) {
        ExpVector e = y.getKey();
        SolvableResidue<C> a = y.getValue();
        GenPolynomial<C> p = a.val; // can not be zero
        if (!p.isZERO()) {
            //B = B.sum( p, e ); // inefficient
            B.doPutToMap(e, p);
        }
    }
    return B;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:23,代碼來源:ResidueSolvablePolynomialRing.java

示例8: setUp

import edu.jas.poly.ExpVector; //導入依賴的package包/類
@Override
protected void setUp() {
    vars = ExpVector.STDVARS(rl);
    cvars = ExpVector.STDVARS(rl - 1);
    c1vars = new String[] { cvars[0] };
    rvars = new String[] { vars[rl - 1] };
    fac = new BigRational(1);
    //ufd = new GreatestCommonDivisorSubres<BigRational>();
    //ufd = GCDFactory.<BigRational> getImplementation(fac);
    ufd = GCDFactory.getProxy(fac);
    sqf = new SquarefreeFieldChar0<BigRational>(fac);

    SquarefreeAbstract<BigRational> sqff = SquarefreeFactory.getImplementation(fac);
    //System.out.println("sqf  = " + sqf);
    //System.out.println("sqff = " + sqff);
    assertEquals("sqf == sqff ", sqf.getClass(), sqff.getClass());

    a = b = c = d = e = null;
    ar = br = cr = dr = er = null;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:21,代碼來源:SquarefreeRatTest.java

示例9: isTopReducible

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * Is top reducible.
 * @param A polynomial.
 * @param P polynomial list.
 * @return true if A is top reducible with respect to P.
 */
//SuppressWarnings("unchecked") // not jet working
@Override
public boolean isTopReducible(List<GenPolynomial<C>> P, GenPolynomial<C> A) {
    if (P == null || P.isEmpty()) {
        return false;
    }
    if (A == null || A.isZERO()) {
        return false;
    }
    boolean mt = false;
    ExpVector e = A.leadingExpVector();
    C a = A.leadingBaseCoefficient();
    for (GenPolynomial<C> p : P) {
        mt = e.multipleOf(p.leadingExpVector());
        if (mt) {
            C b = p.leadingBaseCoefficient();
            C r = a.remainder(b);
            mt = r.isZERO();
            if (mt) {
                return true;
            }
        }
    }
    return false;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:32,代碼來源:DReductionSeq.java

示例10: setUp

import edu.jas.poly.ExpVector; //導入依賴的package包/類
@Override
protected void setUp() {
    vars = ExpVector.STDVARS(rl);
    cvars = ExpVector.STDVARS(rl - 1);
    c1vars = new String[] { cvars[0] };
    rvars = new String[] { vars[rl - 1] };

    fac = new BigInteger(1);

    //ufd = new GreatestCommonDivisorSubres<BigInteger>();
    //ufd = GCDFactory.<BigInteger> getImplementation(fac);
    ufd = GCDFactory.getProxy(fac);

    sqf = new SquarefreeRingChar0<BigInteger>(fac);

    SquarefreeAbstract<BigInteger> sqff = SquarefreeFactory.getImplementation(fac);
    //System.out.println("sqf  = " + sqf);
    //System.out.println("sqff = " + sqff);
    assertEquals("sqf == sqff ", sqf.getClass(), sqff.getClass());

    a = b = c = d = e = null;
    ar = br = cr = dr = er = null;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:24,代碼來源:SquarefreeIntTest.java

示例11: setUp

import edu.jas.poly.ExpVector; //導入依賴的package包/類
@Override
protected void setUp() {
    a = b = c = d = e = null;
    ai = bi = ci = di = ei = null;
    ar = br = cr = dr = er = null;
    //mi = new ModLongRing(primes.get(0),true);
    mi = new ModLongRing(19, true);
    //mi = new ModLongRing(19*17,true); // failing tests
    //mi = new ModLongRing(primes.get(0).multiply(primes.get(1)),false); // failing tests
    //ufd = new GreatestCommonDivisorPrimitive<ModLong>();
    ufd = new GreatestCommonDivisorModEval<ModLong>();
    String[] vars = ExpVector.STDVARS(rl);
    String[] cvars = ExpVector.STDVARS(rl - 1);
    String[] rvars = new String[] { vars[rl - 1] };
    dfac = new GenPolynomialRing<ModLong>(mi, rl, to, vars);
    cfac = new GenPolynomialRing<ModLong>(mi, rl - 1, to, cvars);
    rfac = new GenPolynomialRing<GenPolynomial<ModLong>>(cfac, 1, to, rvars);
    //System.out.println("mi = " + mi);
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:20,代碼來源:GCDModLongEvalTest.java

示例12: setUp

import edu.jas.poly.ExpVector; //導入依賴的package包/類
@Override
protected void setUp() {
    a = b = c = d = e = null;
    ai = bi = ci = di = ei = null;
    ar = br = cr = dr = er = null;
    //mi = new ModIntegerRing(primes.get(0),true);
    mi = new ModIntegerRing(19, true);
    //mi = new ModIntegerRing(19*17,true); // failing tests
    //mi = new ModIntegerRing(primes.get(0).multiply(primes.get(1)),false); // failing tests
    //ufd = new GreatestCommonDivisorPrimitive<ModInteger>();
    ufd = new GreatestCommonDivisorModEval<ModInteger>();
    String[] vars = ExpVector.STDVARS(rl);
    String[] cvars = ExpVector.STDVARS(rl - 1);
    String[] rvars = new String[] { vars[rl - 1] };
    dfac = new GenPolynomialRing<ModInteger>(mi, rl, to, vars);
    cfac = new GenPolynomialRing<ModInteger>(mi, rl - 1, to, cvars);
    rfac = new GenPolynomialRing<GenPolynomial<ModInteger>>(cfac, 1, to, rvars);
    //System.out.println("mi = " + mi);
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:20,代碼來源:GCDModEvalTest.java

示例13: setUp

import edu.jas.poly.ExpVector; //導入依賴的package包/類
@Override
protected void setUp() {
    vars = ExpVector.STDVARS(rl);
    cvars = ExpVector.STDVARS(rl - 1);
    c1vars = new String[] { cvars[0] };
    rvars = new String[] { vars[rl - 1] };

    fac = new ModLongRing(11);
    //ufd = new GreatestCommonDivisorSubres<ModLong>();
    //ufd = GCDFactory.<ModLong> getImplementation(fac);
    ufd = GCDFactory.getProxy(fac);
    sqf = new SquarefreeFiniteFieldCharP<ModLong>(fac);

    SquarefreeAbstract<ModLong> sqff = SquarefreeFactory.getImplementation(fac);
    //System.out.println("sqf  = " + sqf);
    //System.out.println("sqff = " + sqff);
    assertEquals("sqf == sqff ", sqf.getClass(), sqff.getClass());

    a = b = c = d = e = null;
    ar = br = cr = dr = er = null;
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:22,代碼來源:SquarefreeModLongTest.java

示例14: QuotSolvablePolynomialRing

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * The constructor creates a solvable polynomial factory object with the
 * given term order.
 * @param cf factory for coefficients of type C.
 * @param n number of variables.
 * @param t a term order.
 * @param v names for the variables.
 * @param rt solvable multiplication relations.
 */
public QuotSolvablePolynomialRing(RingFactory<SolvableQuotient<C>> cf, int n, TermOrder t, String[] v,
                RelationTable<SolvableQuotient<C>> rt) {
    super(cf, n, t, v, rt);
    //if (rt == null) { // handled in super }
    SolvableQuotientRing<C> cfring = (SolvableQuotientRing<C>) cf; // == coFac
    polCoeff = new RecSolvablePolynomialRing<C>(cfring.ring, n, t, v);
    if (table.size() > 0) { // TODO
        ExpVector e = null;
        ExpVector f = null;
        GenSolvablePolynomial<GenPolynomial<C>> p = null;
        polCoeff.table.update(e, f, p); // from rt
    }
    //coeffTable = polCoeff.coeffTable; //new RelationTable<GenPolynomial<C>>(polCoeff, true);
    ZERO = new QuotSolvablePolynomial<C>(this);
    SolvableQuotient<C> coeff = coFac.getONE();
    //evzero = ExpVector.create(nvar); // from super
    ONE = new QuotSolvablePolynomial<C>(this, coeff, evzero);
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:28,代碼來源:QuotSolvablePolynomialRing.java

示例15: prepend

import edu.jas.poly.ExpVector; //導入依賴的package包/類
/**
 * Prepend a new leading coefficient.
 * @param r variable for the direction.
 * @param h new coefficient.
 * @return new power series.
 */
public MultiVarPowerSeries<C> prepend(final C h, final int r) {
    if (r < 0 || ring.nvar < r) {
        throw new IllegalArgumentException("variable index out of bound");
    }
    return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {


        @Override
        public C generate(ExpVector i) {
            if (i.isZERO()) {
                return h;
            }
            ExpVector e = i.subst(r, i.getVal(r) - 1);
            if (e.signum() < 0) {
                return pfac.coFac.getZERO();
            }
            return coefficient(e);
        }
    });
}
 
開發者ID:kredel,項目名稱:java-algebra-system,代碼行數:27,代碼來源:MultiVarPowerSeries.java


注:本文中的edu.jas.poly.ExpVector類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。