本文整理匯總了Java中edu.jas.poly.ExpVector.dependencyOnVariables方法的典型用法代碼示例。如果您正苦於以下問題:Java ExpVector.dependencyOnVariables方法的具體用法?Java ExpVector.dependencyOnVariables怎麽用?Java ExpVector.dependencyOnVariables使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類edu.jas.poly.ExpVector
的用法示例。
在下文中一共展示了ExpVector.dependencyOnVariables方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: generate
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
@Override
public BigRational generate(ExpVector i) {
int[] v = i.dependencyOnVariables();
if (v.length == 1 && i.getVal(v[0]) == 1L) {
return pfac.coFac.getONE();
}
return pfac.coFac.getZERO();
}
示例2: shiftSelect
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Shift select coefficients. Not selected coefficients are removed from the
* result series.
* @param sel selector functor.
* @return new power series with shifted selected coefficients.
*/
public MultiVarPowerSeries<C> shiftSelect(final Selector<? super C> sel) {
return new MultiVarPowerSeries<C>(ring, new MultiVarCoefficients<C>(ring) {
ExpVectorIterable ib = new ExpVectorIterable(ring.nvar, true, truncate);
Iterator<ExpVector> pos = ib.iterator();
@Override
public C generate(ExpVector i) {
C c;
if (i.signum() > 0) {
int[] deps = i.dependencyOnVariables();
ExpVector x = i.subst(deps[0], i.getVal(deps[0]) - 1L);
c = get(x); // ensure all coefficients are generated
}
do {
c = null;
if (pos.hasNext()) {
ExpVector e = pos.next();
c = coefficient(e);
} else {
break;
}
} while (!sel.select(c));
if (c == null) { // not correct because not known
c = ring.coFac.getZERO();
}
return c;
}
});
}
示例3: fromPowerSeries
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Get a MultiVarPowerSeries<C> from a univariate power series.
* @param ps UnivPowerSeries<C>.
* @param r variable for the direction.
* @return a MultiVarPowerSeries<C>.
*/
public MultiVarPowerSeries<C> fromPowerSeries(final UnivPowerSeries<C> ps, final int r) {
if (ps == null) {
return ZERO;
}
return new MultiVarPowerSeries<C>(this, new MultiVarCoefficients<C>(this) {
@Override
public C generate(ExpVector i) {
if (i.isZERO()) {
return ps.coefficient(0);
}
int[] dep = i.dependencyOnVariables();
if (dep.length != 1) {
return coFac.getZERO();
}
if (dep[0] != r) {
return coFac.getZERO();
}
int j = (int) i.getVal(r);
if (j > 0) {
return ps.coefficient(j);
}
return coFac.getZERO();
}
});
}
示例4: containsHT
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Ideal head term containment test.
* @param G list of polynomials.
* @param H index set.
* @return true, if the vaiables of the head terms of each polynomial in G
* are contained in H, else false.
*/
protected boolean containsHT(Set<Integer> H, List<GenPolynomial<C>> G) {
Set<Integer> S = null;
for (GenPolynomial<C> p : G) {
if (p == null) {
continue;
}
ExpVector e = p.leadingExpVector();
if (e == null) {
continue;
}
int[] v = e.dependencyOnVariables();
if (v == null) {
continue;
}
//System.out.println("v = " + Arrays.toString(v));
if (S == null) { // revert indices
S = new HashSet<Integer>(H.size());
int r = e.length() - 1;
for (Integer i : H) {
S.add(r - i);
}
}
if (contains(v, S)) { // v \subset S
return true;
}
}
return false;
}
示例5: isNormalPositionFor
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Test if this ideal is in normal position for variables i and j.
* @param i first variable index
* @param j second variable index
* @return true if this is in normal position with respect to i and j
*/
public boolean isNormalPositionFor(int i, int j) {
// called in extended ring!
int ip = list.ring.nvar - 1 - i;
int jp = list.ring.nvar - 1 - j;
boolean iOK = false;
boolean jOK = false;
for (GenPolynomial<C> p : getList()) {
if (p.isZERO()) {
continue;
}
ExpVector e = p.leadingExpVector();
int[] dov = e.dependencyOnVariables();
//System.out.println("dov = " + Arrays.toString(dov));
if (dov.length == 0) {
throw new IllegalArgumentException("ideal dimension is not zero");
}
if (dov[0] == ip) {
if (e.totalDeg() != 1) {
return false;
}
iOK = true;
} else if (dov[0] == jp) {
if (e.totalDeg() != 1) {
return false;
}
jOK = true;
}
if (iOK && jOK) {
return true;
}
}
return iOK && jOK;
}
示例6: commonZeroTest
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Common zero test.
* @param F polynomial list.
* @return -1, 0 or 1 if dimension(ideal(F)) &eq; -1, 0 or ≥ 1.
*/
public int commonZeroTest(List<GenPolynomial<C>> F) {
if (F == null || F.isEmpty()) {
return 1;
}
GenPolynomialRing<C> pfac = F.get(0).ring;
if (pfac.nvar <= 0) {
return -1;
}
//int uht = 0;
Set<Integer> v = new HashSet<Integer>(); // for non reduced GBs
for (GenPolynomial<C> p : F) {
if (p.isZERO()) {
continue;
}
if (p.isConstant()) { // for non-monic lists
return -1;
}
ExpVector e = p.leadingExpVector();
if (e == null) {
continue;
}
int[] u = e.dependencyOnVariables();
if (u == null) {
continue;
}
if (u.length == 1) {
//uht++;
v.add(u[0]);
}
}
if (pfac.nvar == v.size()) {
return 0;
}
return 1;
}
示例7: testHenselGCD3
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Test Hensel gcd 3 variables.
*/
public void testHenselGCD3() {
BigInteger ifa = new BigInteger(1);
//dfac = new GenPolynomialRing<BigInteger>(ifa, 2, to , new String[] {"x", "y" });
dfac = new GenPolynomialRing<BigInteger>(ifa, 3, to , new String[] { "x" , "y", "z" });
for (int i = 0; i < 1; i++) {
a = dfac.random(kl, ll, el + i, q);
b = dfac.random(kl, ll, el, q);
c = dfac.random(kl, ll, el, q);
// make monic and c with univariate head term
ExpVector ev = a.leadingExpVector();
if ( ev != null ) {
a.doPutToMap(ev,ifa.getONE());
}
ev = b.leadingExpVector();
if ( ev != null ) {
b.doPutToMap(ev,ifa.getONE());
}
ev = c.leadingExpVector();
if ( ev != null ) {
//c.doPutToMap(ev,ifa.getONE());
}
assertFalse("ev == null ", ev == null);
if ( ev.dependencyOnVariables().length > 1 ) {
c = dfac.univariate(1); //getONE();
}
//a = dfac.parse(" y^2 + 2 x y - 3 y + x^2 - 3 x - 4 ");
//b = dfac.parse(" y^2 + 2 x y + 5 y + x^2 + 5 x + 4 ");
//a = dfac.parse(" x + 2 y + z^2 + 5 ");
//b = dfac.parse(" x - y - 3 + y z ");
//c = dfac.parse(" x y + z^2 + y ");
//a = dfac.parse("7 y^4 - (35 x^3 - 32) y^3 - 160 x^3 y^2 + (105 x^2 - 119) y + (480 x^2 - 544) ");
//b = dfac.parse(" 7 y^4 + 39 y^3 + 32 y^2 ");
//c = dfac.parse(" 7 y + 32 ");
//a = dfac.parse(" ( -13 x^2 ) z^5 + ( 182 x^2 - 143 ) z^3 - ( x^2 * y^3 - 8 x^2 ) z^2 + ( 14 x^2 * y^3 - 11 y^3 - 112 x^2 + 88 ) ");
//b = dfac.parse(" ( -13 x^3 * y^3 ) z^6 + ( 65 y ) z^4 - ( x^3 * y^6 - 8 x^3 * y^3 - 52 y^3 - 195 y + 156 ) z^3 + ( 5 y^4 - 40 y ) z + ( 4 y^6 + 15 y^4 - 44 y^3 - 120 y + 96 ) ) ");
//c = dfac.parse(" 13 z^3 + y^3 - 8 ");
//a = dfac.parse(" 3 z^3 + ( 4 y^2 + 25 x^3 + 16 x^2 + 25 ) z^2 - ( 84 y^4 - 22 x^3 * y^2 + 128 x^2 * y^2 + 138 y^2 - 52 x^6 - 71 x^5 + 35 x^4 - 109 x^3 + 59 x^2 + 18 ) z ");
//b = dfac.parse(" 10 z^5 + ( 60 y^2 + 40 x^3 + 70 x^2 + 90 ) z^4 + ( 14 x + 3 ) z^2 + ( 84 x * y^2 + 18 y^2 + 56 x^4 + 110 x^3 + 21 x^2 + 126 x + 27 ) z ");
//c = dfac.parse("z^2 + ( 6 y^2 + 4 x^3 + 7 x^2 + 9 ) z");
//a = a.abs();
//b = b.abs();
//c = c.abs();
//System.out.println("a = " + a);
//System.out.println("b = " + b);
//System.out.println("c = " + c);
if (a.isZERO() || b.isZERO() || c.isZERO()) {
// skip for this turn
continue;
}
a = a.multiply(c);
b = b.multiply(c);
//System.out.println("a = " + a);
//System.out.println("b = " + b);
d = ufd.gcd(a, b);
e = PolyUtil.<BigInteger> basePseudoRemainder(d, c);
//System.out.println("e = " + e);
//System.out.println("d = " + d);
//System.out.println("c = " + c);
assertTrue("c | gcd(ac,bc) " + e + ", d = " + d, e.isZERO());
}
}
示例8: normalPositionIndex2Vars
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* Normal position index, separate for polynomials with more than 2
* variables. See also
* <a href="http://krum.rz.uni-mannheim.de/mas/src/masring/DIPDEC0.mi.html"
* >mas.masring.DIPDEC0#DIGISR</a>
* @return (i,j) for non-normal variables
*/
public int[] normalPositionIndex2Vars() {
int[] np = null;
int i = -1;
int j = -1;
for (GenPolynomial<C> p : getList()) {
if (p.isZERO()) {
continue;
}
ExpVector e = p.leadingExpVector();
int[] dov = e.dependencyOnVariables();
//System.out.println("dov_head = " + Arrays.toString(dov));
if (dov.length == 0) {
throw new IllegalArgumentException("ideal dimension is not zero " + p);
}
// search bi-variate head terms
if (dov.length >= 2) {
i = dov[0];
j = dov[1];
break;
}
int n = dov[0];
GenPolynomial<C> q = p.reductum();
if (q.isZERO()) {
continue;
}
e = q.degreeVector();
dov = e.dependencyOnVariables();
//System.out.println("dov_red = " + Arrays.toString(dov));
int k = Arrays.binarySearch(dov, n);
int len = 2;
if (k >= 0) {
len = 3;
}
// search bi-variate reductas
if (dov.length >= len) {
switch (k) {
case 0:
i = dov[1];
j = dov[2];
break;
case 1:
i = dov[0];
j = dov[2];
break;
case 2:
i = dov[0];
j = dov[1];
break;
default:
i = dov[0];
j = dov[1];
break;
}
break;
}
}
if (i < 0 || j < 0) {
return np;
}
// adjust index
i = list.ring.nvar - 1 - i;
j = list.ring.nvar - 1 - j;
np = new int[] { j, i }; // reverse
logger.info("normalPositionIndex2Vars, np = " + Arrays.toString(np));
return np;
}
示例9: factorsSquarefreeOptimize
import edu.jas.poly.ExpVector; //導入方法依賴的package包/類
/**
* GenPolynomial factorization of a multivariate squarefree polynomial,
* using Kronecker substitution and variable order optimization.
* @param P squarefree and primitive! (respectively monic) multivariate
* GenPolynomial over the ring C.
* @return [p_1,...,p_k] with P = prod_{i=1,...,r} p_i.
*/
public List<GenPolynomial<C>> factorsSquarefreeOptimize(GenPolynomial<C> P) {
GenPolynomialRing<C> pfac = P.ring;
if (pfac.nvar <= 1) {
return baseFactorsSquarefree(P);
}
List<GenPolynomial<C>> topt = new ArrayList<GenPolynomial<C>>(1);
topt.add(P);
OptimizedPolynomialList<C> opt = TermOrderOptimization.<C> optimizeTermOrder(pfac, topt);
P = opt.list.get(0);
logger.info("optimized polynomial: " + P);
List<Integer> iperm = TermOrderOptimization.inversePermutation(opt.perm);
logger.info("optimize perm: " + opt.perm + ", de-optimize perm: " + iperm);
ExpVector degv = P.degreeVector();
int[] donv = degv.dependencyOnVariables();
List<GenPolynomial<C>> facs = null;
if (degv.length() == donv.length) { // all variables appear
logger.info("do.full factorsSquarefreeKronecker: " + P);
facs = factorsSquarefreeKronecker(P);
} else { // not all variables appear, remove unused variables
GenPolynomial<C> pu = PolyUtil.<C> removeUnusedUpperVariables(P);
//GenPolynomial<C> pl = PolyUtil.<C> removeUnusedLowerVariables(pu); // not useful after optimize
logger.info("do.sparse factorsSquarefreeKronecker: " + pu);
facs = factorsSquarefreeKronecker(pu); // pl
List<GenPolynomial<C>> fs = new ArrayList<GenPolynomial<C>>(facs.size());
GenPolynomialRing<C> pf = P.ring;
//GenPolynomialRing<C> pfu = pu.ring;
for (GenPolynomial<C> p : facs) {
//GenPolynomial<C> pel = p.extendLower(pfu, 0, 0L);
GenPolynomial<C> pe = p.extend(pf, 0, 0L); // pel
fs.add(pe);
}
//System.out.println("fs = " + fs);
facs = fs;
}
List<GenPolynomial<C>> iopt = TermOrderOptimization.<C> permutation(iperm, pfac, facs);
logger.info("de-optimized polynomials: " + iopt);
facs = normalizeFactorization(iopt);
return facs;
}