本文整理匯總了Golang中math/big.Int.SetInt64方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.SetInt64方法的具體用法?Golang Int.SetInt64怎麽用?Golang Int.SetInt64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math/big.Int
的用法示例。
在下文中一共展示了Int.SetInt64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: zForAffine
// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
// y are zero, it assumes that they represent the point at infinity because (0,
// 0) is not on the any of the curves handled here.
func zForAffine(x, y *big.Int) *big.Int {
z := new(big.Int)
if x.Sign() != 0 || y.Sign() != 0 {
z.SetInt64(1)
}
return z
}
示例2: Mul
func (z *Polynomial) Mul(x, y *Polynomial) *Polynomial {
var zCoeffs *big.Int
if z == x || z == y {
// Ensure that we do not modify z if it's a parameter.
zCoeffs = new(big.Int)
} else {
zCoeffs = &z.coeffs
zCoeffs.SetInt64(0)
}
small, large := x, y
if y.degree < x.degree {
small, large = y, x
}
// Walk through small coeffs, shift large by the corresponding amount,
// and accumulate in z.
coeffs := new(big.Int).Set(&small.coeffs)
zero := new(big.Int)
for coeffs.Cmp(zero) > 0 {
deg := calcDegree(coeffs)
factor := new(big.Int).Lsh(&large.coeffs, deg)
zCoeffs.Xor(zCoeffs, factor)
// Prepare for next iteration.
coeffs.SetBit(coeffs, int(deg), 0)
}
z.degree = calcDegree(zCoeffs)
z.coeffs = *zCoeffs
return z
}
示例3: main
func main() {
var s string
var n, two, tmp big.Int
two.SetInt64(2)
in, _ := os.Open("10519.in")
defer in.Close()
out, _ := os.Create("10519.out")
defer out.Close()
for {
if _, err := fmt.Fscanf(in, "%s", &s); err != nil {
break
}
if s == "0" {
fmt.Fprintln(out, 1)
continue
}
n.SetString(s, 10)
tmp.Mul(&n, &n)
tmp.Sub(&tmp, &n)
tmp.Add(&tmp, &two)
fmt.Fprintln(out, &tmp)
}
}
示例4: DecodeBase58
func DecodeBase58(ba []byte) []byte {
if len(ba) == 0 {
return nil
}
x := new(big.Int)
y := big.NewInt(58)
z := new(big.Int)
for _, b := range ba {
v := strings.IndexRune(base58, rune(b))
z.SetInt64(int64(v))
x.Mul(x, y)
x.Add(x, z)
}
xa := x.Bytes()
// Restore leading zeros
i := 0
for i < len(ba) && ba[i] == '1' {
i++
}
ra := make([]byte, i+len(xa))
copy(ra[i:], xa)
return ra
}
示例5: Rat
// Rat returns the rational number representation of z.
// If x is non-nil, Rat stores the result in x instead of
// allocating a new Rat.
func (z *Decimal) Rat(x *big.Rat) *big.Rat {
// TODO(eric):
// We use big.Ints here when technically we could use our
// int64 with big.Rat's SetInt64 methoz.
// I'm not sure if it'll be an optimization or not.
var num, denom big.Int
if z.compact != overflown {
c := big.NewInt(z.compact)
if z.scale >= 0 {
num.Set(c)
denom.Set(mulBigPow10(oneInt, z.scale))
} else {
num.Set(mulBigPow10(c, -z.scale))
denom.SetInt64(1)
}
} else {
if z.scale >= 0 {
num.Set(&z.mantissa)
denom.Set(mulBigPow10(oneInt, z.scale))
} else {
num.Set(mulBigPow10(&z.mantissa, -z.scale))
denom.SetInt64(1)
}
}
if x != nil {
return x.SetFrac(&num, &denom)
}
return new(big.Rat).SetFrac(&num, &denom)
}
示例6: main
func main() {
var iban string
var r, s, t, st []string
u := new(big.Int)
v := new(big.Int)
w := new(big.Int)
iban = "GB82 TEST 1234 5698 7654 32"
r = strings.Split(iban, " ")
s = strings.Split(r[0], "")
t = strings.Split(r[1], "")
st = []string{strconv.Itoa(sCode[t[0]]),
strconv.Itoa(sCode[t[1]]),
strconv.Itoa(sCode[t[2]]),
strconv.Itoa(sCode[t[3]]),
strings.Join(r[2:6], ""),
strconv.Itoa(sCode[s[0]]),
strconv.Itoa(sCode[s[1]]),
strings.Join(s[2:4], ""),
}
u.SetString(strings.Join(st, ""), 10)
v.SetInt64(97)
w.Mod(u, v)
if w.Uint64() == 1 && lCode[strings.Join(s[0:2], "")] == len(strings.Join(r, "")) {
fmt.Printf("IBAN %s looks good!\n", iban)
} else {
fmt.Printf("IBAN %s looks wrong!\n", iban)
}
}
示例7: HideEncode
// HideEncode a Int such that it appears indistinguishable
// from a HideLen()-byte string chosen uniformly at random,
// assuming the Int contains a uniform integer modulo M.
// For a Int this always succeeds and returns non-nil.
func (i *Int) HideEncode(rand cipher.Stream) []byte {
// Lengh of required encoding
hidelen := i.HideLen()
// Bit-position of the most-significant bit of the modular integer
// in the most-significant byte of its encoding.
highbit := uint((i.M.BitLen() - 1) & 7)
var enc big.Int
for {
// Pick a random multiplier of a suitable bit-length.
var b [1]byte
rand.XORKeyStream(b[:], b[:])
mult := int64(b[0] >> highbit)
// Multiply, and see if we end up with
// a Int of the proper byte-length.
// Reroll if we get a result larger than HideLen(),
// to ensure uniformity of the resulting encoding.
enc.SetInt64(mult).Mul(&i.V, &enc)
if enc.BitLen() <= hidelen*8 {
break
}
}
b := enc.Bytes() // may be shorter than l
if ofs := hidelen - len(b); ofs != 0 {
b = append(make([]byte, ofs), b...)
}
return b
}
示例8: BigInt
// BigInt sets all bytes in the passed big int to zero and then sets the
// value to 0. This differs from simply setting the value in that it
// specifically clears the underlying bytes whereas simply setting the value
// does not. This is mostly useful to forcefully clear private keys.
func BigInt(x *big.Int) {
b := x.Bits()
for i := range b {
b[i] = 0
}
x.SetInt64(0)
}
示例9: OddSwing
func (ps *Swing) OddSwing(z *big.Int, k uint) *big.Int {
if k < uint(len(SmallOddSwing)) {
return z.SetInt64(SmallOddSwing[k])
}
rootK := xmath.FloorSqrt(k)
ps.factors = ps.factors[:0] // reset length, reusing existing capacity
ps.Sieve.Iterate(3, uint64(rootK), func(p uint64) (terminate bool) {
q := uint64(k) / p
for q > 0 {
if q&1 == 1 {
ps.factors = append(ps.factors, p)
}
q /= p
}
return
})
ps.Sieve.Iterate(uint64(rootK+1), uint64(k/3), func(p uint64) (term bool) {
if (uint64(k) / p & 1) == 1 {
ps.factors = append(ps.factors, p)
}
return
})
ps.Sieve.Iterate(uint64(k/2+1), uint64(k), func(p uint64) (term bool) {
ps.factors = append(ps.factors, p)
return
})
return xmath.Product(z, ps.factors)
}
示例10: EncodeBigInt
// EncodeBigInt returns the base62 encoding of an arbitrary precision integer
func (e *Encoding) EncodeBigInt(n *big.Int) string {
var (
b = make([]byte, 0)
rem = new(big.Int)
bse = new(big.Int)
zero = new(big.Int)
)
bse.SetInt64(base)
zero.SetInt64(0)
// Progressively divide by base, until we hit zero
// store remainder each time
// Prepend as an additional character is the higher power
for n.Cmp(zero) == 1 {
n, rem = n.DivMod(n, bse, rem)
b = append([]byte{e.encode[rem.Int64()]}, b...)
}
s := string(b)
if e.padding > 0 {
s = e.pad(s, e.padding)
}
return s
}
示例11: main
func main() {
out, _ := os.Create("485.out")
defer out.Close()
for !done {
var one big.Int
one.SetInt64(1)
p = append(p, one)
l := len(p)
fmt.Fprint(out, &p[l-1])
for i := l - 2; i > 0; i-- {
p[i].Add(&p[i], &p[i-1])
fmt.Fprintf(out, " %v", &p[i])
s = fmt.Sprint(&p[i])
if len(s) > MAX {
done = true
break
}
}
if !done && l > 1 {
fmt.Fprintf(out, " %v", &p[0])
}
fmt.Fprintln(out)
}
}
示例12: Decode
// Decode decodes a modified base58 string to a byte slice.
func Decode(b string) []byte {
answer := big.NewInt(0)
j := big.NewInt(1)
scratch := new(big.Int)
for i := len(b) - 1; i >= 0; i-- {
tmp := b58[b[i]]
if tmp == 255 {
return []byte("")
}
scratch.SetInt64(int64(tmp))
scratch.Mul(j, scratch)
answer.Add(answer, scratch)
j.Mul(j, bigRadix)
}
tmpval := answer.Bytes()
var numZeros int
for numZeros = 0; numZeros < len(b); numZeros++ {
if b[numZeros] != alphabetIdx0 {
break
}
}
flen := numZeros + len(tmpval)
val := make([]byte, flen, flen)
copy(val[numZeros:], tmpval)
return val
}
示例13: factorial
func factorial(n int) string {
var res big.Int
res.SetInt64(1)
for i := 1; i <= n; i++ {
res.Mul(&res, big.NewInt(int64(i)))
}
return res.String()
}
示例14: nonceRFC6979
// nonceRFC6979 is a local instatiation of deterministic nonce generation
// by the standards of RFC6979.
func nonceRFC6979(privkey []byte, hash []byte, extra []byte,
version []byte) []byte {
pkD := new(big.Int).SetBytes(privkey)
defer pkD.SetInt64(0)
bigK := secp256k1.NonceRFC6979(pkD, hash, extra, version)
defer bigK.SetInt64(0)
k := BigIntToEncodedBytes(bigK)
return k[:]
}
示例15: main
func main() {
n := new(big.Int).SetInt64(int64(1))
t := new(big.Int)
for i := int64(1); i <= 100; i++ {
t.SetInt64(i)
n.Mul(n, t)
}
fmt.Printf("Problem 20: %d\n", SumOfBigIntDigits(n))
}