本文整理匯總了Golang中math/big.Int.Set方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.Set方法的具體用法?Golang Int.Set怎麽用?Golang Int.Set使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math/big.Int
的用法示例。
在下文中一共展示了Int.Set方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: ProbablyPrimeBigInt
// ProbablyPrimeBigInt returns true if n is prime or n is a pseudoprime to base
// a. It implements the Miller-Rabin primality test for one specific value of
// 'a' and k == 1. See also ProbablyPrimeUint32.
func ProbablyPrimeBigInt(n, a *big.Int) bool {
var d big.Int
d.Set(n)
d.Sub(&d, _1) // d <- n-1
s := 0
for ; d.Bit(s) == 0; s++ {
}
nMinus1 := big.NewInt(0).Set(&d)
d.Rsh(&d, uint(s))
x := ModPowBigInt(a, &d, n)
if x.Cmp(_1) == 0 || x.Cmp(nMinus1) == 0 {
return true
}
for ; s > 1; s-- {
if x = x.Mod(x.Mul(x, x), n); x.Cmp(_1) == 0 {
return false
}
if x.Cmp(nMinus1) == 0 {
return true
}
}
return false
}
示例2: factor
func factor(n *big.Int) (pf []pExp) {
var e int64
for ; n.Bit(int(e)) == 0; e++ {
}
if e > 0 {
n.Rsh(n, uint(e))
pf = []pExp{{big.NewInt(2), e}}
}
s := sqrt(n)
q, r := new(big.Int), new(big.Int)
for d := big.NewInt(3); n.Cmp(one) > 0; d.Add(d, two) {
if d.Cmp(s) > 0 {
d.Set(n)
}
for e = 0; ; e++ {
q.QuoRem(n, d, r)
if r.BitLen() > 0 {
break
}
n.Set(q)
}
if e > 0 {
pf = append(pf, pExp{new(big.Int).Set(d), e})
s = sqrt(n)
}
}
return
}
示例3: add
func (c *Curve) add(p1x, p1y, p2x, p2y *big.Int) {
if p1x.Cmp(p2x) == 0 && p1y.Cmp(p2y) == 0 {
// double
c.t.Mul(p1x, p1x)
c.t.Mul(c.t, bigInt3)
c.t.Add(c.t, c.A)
c.tx.Mul(bigInt2, p1y)
c.tx.ModInverse(c.tx, c.P)
c.t.Mul(c.t, c.tx)
c.t.Mod(c.t, c.P)
} else {
c.tx.Sub(p2x, p1x)
c.tx.Mod(c.tx, c.P)
c.pos(c.tx)
c.ty.Sub(p2y, p1y)
c.ty.Mod(c.ty, c.P)
c.pos(c.ty)
c.t.ModInverse(c.tx, c.P)
c.t.Mul(c.t, c.ty)
c.t.Mod(c.t, c.P)
}
c.tx.Mul(c.t, c.t)
c.tx.Sub(c.tx, p1x)
c.tx.Sub(c.tx, p2x)
c.tx.Mod(c.tx, c.P)
c.pos(c.tx)
c.ty.Sub(p1x, c.tx)
c.ty.Mul(c.ty, c.t)
c.ty.Sub(c.ty, p1y)
c.ty.Mod(c.ty, c.P)
c.pos(c.ty)
p1x.Set(c.tx)
p1y.Set(c.ty)
}
示例4: calcDifficultyFrontier
func calcDifficultyFrontier(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
diff := new(big.Int)
adjust := new(big.Int).Div(parentDiff, params.DifficultyBoundDivisor)
bigTime := new(big.Int)
bigParentTime := new(big.Int)
bigTime.SetUint64(time)
bigParentTime.SetUint64(parentTime)
if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 {
diff.Add(parentDiff, adjust)
} else {
diff.Sub(parentDiff, adjust)
}
if diff.Cmp(params.MinimumDifficulty) < 0 {
diff.Set(params.MinimumDifficulty)
}
periodCount := new(big.Int).Add(parentNumber, common.Big1)
periodCount.Div(periodCount, ExpDiffPeriod)
if periodCount.Cmp(common.Big1) > 0 {
// diff = diff + 2^(periodCount - 2)
expDiff := periodCount.Sub(periodCount, common.Big2)
expDiff.Exp(common.Big2, expDiff, nil)
diff.Add(diff, expDiff)
diff = common.BigMax(diff, params.MinimumDifficulty)
}
return diff
}
示例5: ToBase
// ToBase produces n in base b. For example
//
// ToBase(2047, 22) -> [1, 5, 4]
//
// 1 * 22^0 1
// 5 * 22^1 110
// 4 * 22^2 1936
// ----
// 2047
//
// ToBase panics for bases < 2.
func ToBase(n *big.Int, b int) []int {
var nn big.Int
nn.Set(n)
if b < 2 {
panic("invalid base")
}
k := 1
switch nn.Sign() {
case -1:
nn.Neg(&nn)
k = -1
case 0:
return []int{0}
}
bb := big.NewInt(int64(b))
var r []int
rem := big.NewInt(0)
for nn.Sign() != 0 {
nn.QuoRem(&nn, bb, rem)
r = append(r, k*int(rem.Int64()))
}
return r
}
示例6: ratProb
func ratProb(mode int) func(*big.Rat) *big.Rat {
return func(x *big.Rat) *big.Rat {
lo := big.NewInt(0)
hi := new(big.Int).Set(big2p63)
n := 0
for lo.Cmp(hi) != 0 {
m := new(big.Int).Add(lo, hi)
m = m.Rsh(m, 1)
if n++; n > 100 {
fmt.Printf("??? %v %v %v\n", lo, hi, m)
break
}
v := new(big.Rat).SetFrac(m, big2p63)
f, _ := v.Float64()
v.SetFloat64(f)
if v.Cmp(x) < 0 {
lo.Add(m, bigOne)
} else {
hi.Set(m)
}
}
switch mode {
default: // case 0
return new(big.Rat).SetFrac(lo, big2p63)
case 1:
if lo.Cmp(big.NewInt(cutoff1)) <= 0 {
lo.Add(lo, big.NewInt(1<<63-cutoff1))
}
return new(big.Rat).SetFrac(lo, big2p63)
case 2:
return new(big.Rat).SetFrac(lo, big.NewInt(cutoff1))
}
}
}
示例7: String
// String returns a float string representation of a Decimal
func (d Decimal) String() string {
// Retrieve a copy of the Decimal's internal big.Rat denominator
denom := new(big.Int)
denom.Set(d.rational.Denom())
// Discover the precision of the denominator and use it to fix
// the precision of the string conversion
var precision = 0
one := big.NewInt(1)
ten := big.NewInt(10)
for denom.Cmp(one) > 0 {
denom = denom.Div(denom, ten)
precision++
}
if !d.finite {
if d.rational.Sign() == 1 {
return "Infinity"
} else if d.rational.Sign() == -1 {
return "-Infinity"
} else {
return "NaN"
}
}
return d.rational.FloatString(precision)
}
示例8: CalcGasLimit
// CalcGasLimit computes the gas limit of the next block after parent.
// The result may be modified by the caller.
// This is miner strategy, not consensus protocol.
func CalcGasLimit(parent *types.Block) *big.Int {
// contrib = (parentGasUsed * 3 / 2) / 1024
contrib := new(big.Int).Mul(parent.GasUsed(), big.NewInt(3))
contrib = contrib.Div(contrib, big.NewInt(2))
contrib = contrib.Div(contrib, params.GasLimitBoundDivisor)
// decay = parentGasLimit / 1024 -1
decay := new(big.Int).Div(parent.GasLimit(), params.GasLimitBoundDivisor)
decay.Sub(decay, big.NewInt(1))
/*
strategy: gasLimit of block-to-mine is set based on parent's
gasUsed value. if parentGasUsed > parentGasLimit * (2/3) then we
increase it, otherwise lower it (or leave it unchanged if it's right
at that usage) the amount increased/decreased depends on how far away
from parentGasLimit * (2/3) parentGasUsed is.
*/
gl := new(big.Int).Sub(parent.GasLimit(), decay)
gl = gl.Add(gl, contrib)
gl.Set(common.BigMax(gl, params.MinGasLimit))
// however, if we're now below the target (TargetGasLimit) we increase the
// limit as much as we can (parentGasLimit / 1024 -1)
if gl.Cmp(params.TargetGasLimit) < 0 {
gl.Add(parent.GasLimit(), decay)
gl.Set(common.BigMin(gl, params.TargetGasLimit))
}
return gl
}
示例9: floatString
func (i BigInt) floatString(verb byte, prec int) string {
switch verb {
case 'f', 'F':
str := fmt.Sprintf("%d", i.Int)
if prec > 0 {
str += "." + zeros(prec)
}
return str
case 'e', 'E':
// The exponent will alway be >= 0.
sign := ""
var x big.Int
x.Set(i.Int)
if x.Sign() < 0 {
sign = "-"
x.Neg(&x)
}
return eFormat(verb, prec, sign, x.String(), eExponent(&x))
case 'g', 'G':
// Exponent is always positive so it's easy.
var x big.Int
x.Set(i.Int)
if eExponent(&x) >= prec {
// Use e format.
verb -= 2 // g becomes e.
return trimEZeros(verb, i.floatString(verb, prec-1))
}
// Use f format, but this is just an integer.
return fmt.Sprintf("%d", i.Int)
default:
Errorf("can't handle verb %c for big int", verb)
}
return ""
}
示例10: split
func split(number *big.Int, available, needed int) []Share {
coef := make([]*big.Int, 0)
shares := make([]Share, 0)
coef = append(coef, number)
rand.Seed(time.Now().Unix())
for i := 1; i < needed; i++ {
c := big.NewInt(rand.Int63())
coef = append(coef, c)
}
for x := 1; x <= available; x++ {
accum := new(big.Int)
accum.Set(coef[0])
for exp := 1; exp < needed; exp++ {
p := math.Pow(float64(x), float64(exp))
w := big.NewInt(int64(p))
r := new(big.Int)
r.Mul(coef[exp], w)
accum.Add(accum, r)
}
s := new(big.Int)
s.Set(accum)
share := Share{Part: s, ID: int64(x)}
shares = append(shares, share)
}
return shares
}
示例11: calcDiffAdjust
/* calcDiff returns a bool given two block headers. This bool is
true if the correct dificulty adjustment is seen in the "next" header.
Only feed it headers n-2016 and n-1, otherwise it will calculate a difficulty
when no adjustment should take place, and return false.
Note that the epoch is actually 2015 blocks long, which is confusing. */
func calcDiffAdjust(start, end wire.BlockHeader, p *chaincfg.Params) uint32 {
duration := end.Timestamp.UnixNano() - start.Timestamp.UnixNano()
if duration < minRetargetTimespan {
log.Printf("whoa there, block %s off-scale high 4X diff adjustment!",
end.BlockSha().String())
duration = minRetargetTimespan
} else if duration > maxRetargetTimespan {
log.Printf("Uh-oh! block %s off-scale low 0.25X diff adjustment!\n",
end.BlockSha().String())
duration = maxRetargetTimespan
}
// calculation of new 32-byte difficulty target
// first turn the previous target into a big int
prevTarget := blockchain.CompactToBig(start.Bits)
// new target is old * duration...
newTarget := new(big.Int).Mul(prevTarget, big.NewInt(duration))
// divided by 2 weeks
newTarget.Div(newTarget, big.NewInt(int64(targetTimespan)))
// clip again if above minimum target (too easy)
if newTarget.Cmp(p.PowLimit) > 0 {
newTarget.Set(p.PowLimit)
}
// calculate and return 4-byte 'bits' difficulty from 32-byte target
return blockchain.BigToCompact(newTarget)
}
示例12: Comma
// Ported to math/big.Int from github.com/dustin/go-humanize
func Comma(v *big.Int) string {
{
var copy big.Int
copy.Set(v)
v = ©
}
sign := ""
if v.Sign() < 0 {
sign = "-"
v.Abs(v)
}
tmp := &big.Int{}
herman := big.NewInt(999)
thousand := big.NewInt(1000)
var parts []string
for v.Cmp(herman) > 0 {
part := tmp.Mod(v, thousand).String()
switch len(part) {
case 2:
part = "0" + part
case 1:
part = "00" + part
}
v.Div(v, thousand)
parts = append(parts, part)
}
parts = append(parts, v.String())
for i, j := 0, len(parts)-1; i < j; i, j = i+1, j-1 {
parts[i], parts[j] = parts[j], parts[i]
}
return sign + strings.Join(parts, ",")
}
示例13: doubleJacobian
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
delta := new(big.Int).Mul(z, z)
delta.Mod(delta, curve.P)
gamma := new(big.Int).Mul(y, y)
gamma.Mod(gamma, curve.P)
alpha := new(big.Int).Sub(x, delta)
if alpha.Sign() == -1 {
alpha.Add(alpha, curve.P)
}
alpha2 := new(big.Int).Add(x, delta)
alpha.Mul(alpha, alpha2)
alpha2.Set(alpha)
alpha.Lsh(alpha, 1)
alpha.Add(alpha, alpha2)
beta := alpha2.Mul(x, gamma)
x3 := new(big.Int).Mul(alpha, alpha)
beta8 := new(big.Int).Lsh(beta, 3)
x3.Sub(x3, beta8)
for x3.Sign() == -1 {
x3.Add(x3, curve.P)
}
x3.Mod(x3, curve.P)
z3 := new(big.Int).Add(y, z)
z3.Mul(z3, z3)
z3.Sub(z3, gamma)
if z3.Sign() == -1 {
z3.Add(z3, curve.P)
}
z3.Sub(z3, delta)
if z3.Sign() == -1 {
z3.Add(z3, curve.P)
}
z3.Mod(z3, curve.P)
beta.Lsh(beta, 2)
beta.Sub(beta, x3)
if beta.Sign() == -1 {
beta.Add(beta, curve.P)
}
y3 := alpha.Mul(alpha, beta)
gamma.Mul(gamma, gamma)
gamma.Lsh(gamma, 3)
gamma.Mod(gamma, curve.P)
y3.Sub(y3, gamma)
if y3.Sign() == -1 {
y3.Add(y3, curve.P)
}
y3.Mod(y3, curve.P)
return x3, y3, z3
}
示例14: times
func times(z *big.Int, x *big.Int, y *big.Int) *big.Int {
var lim, x1, y1 big.Int
lim.Exp(big.NewInt(2), big.NewInt(256), big.NewInt(0))
x1.Set(x)
y1.Set(y)
z.Mul(x, y)
z.Mod(z, &lim)
return z
}
示例15: JacobiSymbol
// JacobiSymbol returns the jacobi symbol ( N / D ) of
// N (numerator) over D (denominator).
// See http://en.wikipedia.org/wiki/Jacobi_symbol
func JacobiSymbol(N *big.Int, D *big.Int) int {
//Step 0: parse input / easy cases
if D.Sign() <= 0 || D.Bit(0) == 0 {
// we will assume D is positive
// wolfram is ok with negative denominator
// im not sure what is standard though
panic("JacobiSymbol defined for positive odd denominator only")
}
var n, d, tmp big.Int
n.Set(N)
d.Set(D)
j := 1
for {
// Step 1: Reduce the numerator mod the denominator
n.Mod(&n, &d)
if n.Sign() == 0 {
// if n,d not relatively prime
return 0
}
if len(n.Bits()) >= len(d.Bits())-1 {
// n > d/2 so swap n with d-n
// and multiply j by JacobiSymbol(-1 / d)
n.Sub(&d, &n)
if d.Bits()[0]&3 == 3 {
// if d = 3 mod 4
j = -1 * j
}
}
// Step 2: extract factors of 2
s := trailingZeroBits(&n)
n.Rsh(&n, s)
if s&1 == 1 {
switch d.Bits()[0] & 7 {
case 3, 5: // d = 3,5 mod 8
j = -1 * j
}
}
// Step 3: check numerator
if len(n.Bits()) == 1 && n.Bits()[0] == 1 {
// if n = 1 were done
return j
}
// Step 4: flip and go back to step 1
if n.Bits()[0]&3 != 1 { // n = 3 mod 4
if d.Bits()[0]&3 != 1 { // d = 3 mod 4
j = -1 * j
}
}
tmp.Set(&n)
n.Set(&d)
d.Set(&tmp)
}
}