當前位置: 首頁>>代碼示例>>Golang>>正文


Golang Int.Set方法代碼示例

本文整理匯總了Golang中math/big.Int.Set方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.Set方法的具體用法?Golang Int.Set怎麽用?Golang Int.Set使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在math/big.Int的用法示例。


在下文中一共展示了Int.Set方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: ProbablyPrimeBigInt

// ProbablyPrimeBigInt returns true if n is prime or n is a pseudoprime to base
// a. It implements the Miller-Rabin primality test for one specific value of
// 'a' and k == 1.  See also ProbablyPrimeUint32.
func ProbablyPrimeBigInt(n, a *big.Int) bool {
	var d big.Int
	d.Set(n)
	d.Sub(&d, _1) // d <- n-1
	s := 0
	for ; d.Bit(s) == 0; s++ {
	}
	nMinus1 := big.NewInt(0).Set(&d)
	d.Rsh(&d, uint(s))

	x := ModPowBigInt(a, &d, n)
	if x.Cmp(_1) == 0 || x.Cmp(nMinus1) == 0 {
		return true
	}

	for ; s > 1; s-- {
		if x = x.Mod(x.Mul(x, x), n); x.Cmp(_1) == 0 {
			return false
		}

		if x.Cmp(nMinus1) == 0 {
			return true
		}
	}
	return false
}
開發者ID:newobject,項目名稱:camlistore,代碼行數:29,代碼來源:mathutil.go

示例2: factor

func factor(n *big.Int) (pf []pExp) {
	var e int64
	for ; n.Bit(int(e)) == 0; e++ {
	}
	if e > 0 {
		n.Rsh(n, uint(e))
		pf = []pExp{{big.NewInt(2), e}}
	}
	s := sqrt(n)
	q, r := new(big.Int), new(big.Int)
	for d := big.NewInt(3); n.Cmp(one) > 0; d.Add(d, two) {
		if d.Cmp(s) > 0 {
			d.Set(n)
		}
		for e = 0; ; e++ {
			q.QuoRem(n, d, r)
			if r.BitLen() > 0 {
				break
			}
			n.Set(q)
		}
		if e > 0 {
			pf = append(pf, pExp{new(big.Int).Set(d), e})
			s = sqrt(n)
		}
	}
	return
}
開發者ID:travis1230,項目名稱:RosettaCodeData,代碼行數:28,代碼來源:multiplicative-order.go

示例3: add

func (c *Curve) add(p1x, p1y, p2x, p2y *big.Int) {
	if p1x.Cmp(p2x) == 0 && p1y.Cmp(p2y) == 0 {
		// double
		c.t.Mul(p1x, p1x)
		c.t.Mul(c.t, bigInt3)
		c.t.Add(c.t, c.A)
		c.tx.Mul(bigInt2, p1y)
		c.tx.ModInverse(c.tx, c.P)
		c.t.Mul(c.t, c.tx)
		c.t.Mod(c.t, c.P)
	} else {
		c.tx.Sub(p2x, p1x)
		c.tx.Mod(c.tx, c.P)
		c.pos(c.tx)
		c.ty.Sub(p2y, p1y)
		c.ty.Mod(c.ty, c.P)
		c.pos(c.ty)
		c.t.ModInverse(c.tx, c.P)
		c.t.Mul(c.t, c.ty)
		c.t.Mod(c.t, c.P)
	}
	c.tx.Mul(c.t, c.t)
	c.tx.Sub(c.tx, p1x)
	c.tx.Sub(c.tx, p2x)
	c.tx.Mod(c.tx, c.P)
	c.pos(c.tx)
	c.ty.Sub(p1x, c.tx)
	c.ty.Mul(c.ty, c.t)
	c.ty.Sub(c.ty, p1y)
	c.ty.Mod(c.ty, c.P)
	c.pos(c.ty)
	p1x.Set(c.tx)
	p1y.Set(c.ty)
}
開發者ID:stargrave,項目名稱:gogost,代碼行數:34,代碼來源:curve.go

示例4: calcDifficultyFrontier

func calcDifficultyFrontier(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
	diff := new(big.Int)
	adjust := new(big.Int).Div(parentDiff, params.DifficultyBoundDivisor)
	bigTime := new(big.Int)
	bigParentTime := new(big.Int)

	bigTime.SetUint64(time)
	bigParentTime.SetUint64(parentTime)

	if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 {
		diff.Add(parentDiff, adjust)
	} else {
		diff.Sub(parentDiff, adjust)
	}
	if diff.Cmp(params.MinimumDifficulty) < 0 {
		diff.Set(params.MinimumDifficulty)
	}

	periodCount := new(big.Int).Add(parentNumber, common.Big1)
	periodCount.Div(periodCount, ExpDiffPeriod)
	if periodCount.Cmp(common.Big1) > 0 {
		// diff = diff + 2^(periodCount - 2)
		expDiff := periodCount.Sub(periodCount, common.Big2)
		expDiff.Exp(common.Big2, expDiff, nil)
		diff.Add(diff, expDiff)
		diff = common.BigMax(diff, params.MinimumDifficulty)
	}

	return diff
}
開發者ID:yexingl,項目名稱:go-ethereum,代碼行數:30,代碼來源:block_validator.go

示例5: ToBase

// ToBase produces n in base b. For example
//
// 	ToBase(2047, 22) -> [1, 5, 4]
//
//	1 * 22^0           1
//	5 * 22^1         110
//	4 * 22^2        1936
//	                ----
//	                2047
//
// ToBase panics for bases < 2.
func ToBase(n *big.Int, b int) []int {
	var nn big.Int
	nn.Set(n)
	if b < 2 {
		panic("invalid base")
	}

	k := 1
	switch nn.Sign() {
	case -1:
		nn.Neg(&nn)
		k = -1
	case 0:
		return []int{0}
	}

	bb := big.NewInt(int64(b))
	var r []int
	rem := big.NewInt(0)
	for nn.Sign() != 0 {
		nn.QuoRem(&nn, bb, rem)
		r = append(r, k*int(rem.Int64()))
	}
	return r
}
開發者ID:cznic,項目名稱:mathutil,代碼行數:36,代碼來源:mathutil.go

示例6: ratProb

func ratProb(mode int) func(*big.Rat) *big.Rat {
	return func(x *big.Rat) *big.Rat {
		lo := big.NewInt(0)
		hi := new(big.Int).Set(big2p63)
		n := 0
		for lo.Cmp(hi) != 0 {
			m := new(big.Int).Add(lo, hi)
			m = m.Rsh(m, 1)
			if n++; n > 100 {
				fmt.Printf("??? %v %v %v\n", lo, hi, m)
				break
			}
			v := new(big.Rat).SetFrac(m, big2p63)
			f, _ := v.Float64()
			v.SetFloat64(f)
			if v.Cmp(x) < 0 {
				lo.Add(m, bigOne)
			} else {
				hi.Set(m)
			}
		}
		switch mode {
		default: // case 0
			return new(big.Rat).SetFrac(lo, big2p63)
		case 1:
			if lo.Cmp(big.NewInt(cutoff1)) <= 0 {
				lo.Add(lo, big.NewInt(1<<63-cutoff1))
			}
			return new(big.Rat).SetFrac(lo, big2p63)
		case 2:
			return new(big.Rat).SetFrac(lo, big.NewInt(cutoff1))
		}
	}
}
開發者ID:rsc,項目名稱:tmp,代碼行數:34,代碼來源:graph.go

示例7: String

// String returns a float string representation of a Decimal
func (d Decimal) String() string {
	// Retrieve a copy of the Decimal's internal big.Rat denominator
	denom := new(big.Int)
	denom.Set(d.rational.Denom())
	// Discover the precision of the denominator and use it to fix
	// the precision of the string conversion
	var precision = 0
	one := big.NewInt(1)
	ten := big.NewInt(10)
	for denom.Cmp(one) > 0 {
		denom = denom.Div(denom, ten)
		precision++
	}

	if !d.finite {
		if d.rational.Sign() == 1 {
			return "Infinity"
		} else if d.rational.Sign() == -1 {
			return "-Infinity"
		} else {
			return "NaN"
		}
	}

	return d.rational.FloatString(precision)
}
開發者ID:raymondjacobson,項目名稱:mgo,代碼行數:27,代碼來源:decimal.go

示例8: CalcGasLimit

// CalcGasLimit computes the gas limit of the next block after parent.
// The result may be modified by the caller.
// This is miner strategy, not consensus protocol.
func CalcGasLimit(parent *types.Block) *big.Int {
	// contrib = (parentGasUsed * 3 / 2) / 1024
	contrib := new(big.Int).Mul(parent.GasUsed(), big.NewInt(3))
	contrib = contrib.Div(contrib, big.NewInt(2))
	contrib = contrib.Div(contrib, params.GasLimitBoundDivisor)

	// decay = parentGasLimit / 1024 -1
	decay := new(big.Int).Div(parent.GasLimit(), params.GasLimitBoundDivisor)
	decay.Sub(decay, big.NewInt(1))

	/*
		strategy: gasLimit of block-to-mine is set based on parent's
		gasUsed value.  if parentGasUsed > parentGasLimit * (2/3) then we
		increase it, otherwise lower it (or leave it unchanged if it's right
		at that usage) the amount increased/decreased depends on how far away
		from parentGasLimit * (2/3) parentGasUsed is.
	*/
	gl := new(big.Int).Sub(parent.GasLimit(), decay)
	gl = gl.Add(gl, contrib)
	gl.Set(common.BigMax(gl, params.MinGasLimit))

	// however, if we're now below the target (TargetGasLimit) we increase the
	// limit as much as we can (parentGasLimit / 1024 -1)
	if gl.Cmp(params.TargetGasLimit) < 0 {
		gl.Add(parent.GasLimit(), decay)
		gl.Set(common.BigMin(gl, params.TargetGasLimit))
	}
	return gl
}
開發者ID:yexingl,項目名稱:go-ethereum,代碼行數:32,代碼來源:block_validator.go

示例9: floatString

func (i BigInt) floatString(verb byte, prec int) string {
	switch verb {
	case 'f', 'F':
		str := fmt.Sprintf("%d", i.Int)
		if prec > 0 {
			str += "." + zeros(prec)
		}
		return str
	case 'e', 'E':
		// The exponent will alway be >= 0.
		sign := ""
		var x big.Int
		x.Set(i.Int)
		if x.Sign() < 0 {
			sign = "-"
			x.Neg(&x)
		}
		return eFormat(verb, prec, sign, x.String(), eExponent(&x))
	case 'g', 'G':
		// Exponent is always positive so it's easy.
		var x big.Int
		x.Set(i.Int)
		if eExponent(&x) >= prec {
			// Use e format.
			verb -= 2 // g becomes e.
			return trimEZeros(verb, i.floatString(verb, prec-1))
		}
		// Use f format, but this is just an integer.
		return fmt.Sprintf("%d", i.Int)
	default:
		Errorf("can't handle verb %c for big int", verb)
	}
	return ""
}
開發者ID:jmptrader,項目名稱:ivy,代碼行數:34,代碼來源:bigint.go

示例10: split

func split(number *big.Int, available, needed int) []Share {
	coef := make([]*big.Int, 0)
	shares := make([]Share, 0)

	coef = append(coef, number)

	rand.Seed(time.Now().Unix())
	for i := 1; i < needed; i++ {

		c := big.NewInt(rand.Int63())
		coef = append(coef, c)
	}

	for x := 1; x <= available; x++ {
		accum := new(big.Int)
		accum.Set(coef[0])
		for exp := 1; exp < needed; exp++ {
			p := math.Pow(float64(x), float64(exp))
			w := big.NewInt(int64(p))

			r := new(big.Int)
			r.Mul(coef[exp], w)

			accum.Add(accum, r)
		}

		s := new(big.Int)
		s.Set(accum)
		share := Share{Part: s, ID: int64(x)}
		shares = append(shares, share)
	}

	return shares
}
開發者ID:vonwenm,項目名稱:shamir-secret-sharing-scheme,代碼行數:34,代碼來源:main.go

示例11: calcDiffAdjust

/* calcDiff returns a bool given two block headers.  This bool is
true if the correct dificulty adjustment is seen in the "next" header.
Only feed it headers n-2016 and n-1, otherwise it will calculate a difficulty
when no adjustment should take place, and return false.
Note that the epoch is actually 2015 blocks long, which is confusing. */
func calcDiffAdjust(start, end wire.BlockHeader, p *chaincfg.Params) uint32 {
	duration := end.Timestamp.UnixNano() - start.Timestamp.UnixNano()
	if duration < minRetargetTimespan {
		log.Printf("whoa there, block %s off-scale high 4X diff adjustment!",
			end.BlockSha().String())
		duration = minRetargetTimespan
	} else if duration > maxRetargetTimespan {
		log.Printf("Uh-oh! block %s off-scale low 0.25X diff adjustment!\n",
			end.BlockSha().String())
		duration = maxRetargetTimespan
	}

	// calculation of new 32-byte difficulty target
	// first turn the previous target into a big int
	prevTarget := blockchain.CompactToBig(start.Bits)
	// new target is old * duration...
	newTarget := new(big.Int).Mul(prevTarget, big.NewInt(duration))
	// divided by 2 weeks
	newTarget.Div(newTarget, big.NewInt(int64(targetTimespan)))

	// clip again if above minimum target (too easy)
	if newTarget.Cmp(p.PowLimit) > 0 {
		newTarget.Set(p.PowLimit)
	}

	// calculate and return 4-byte 'bits' difficulty from 32-byte target
	return blockchain.BigToCompact(newTarget)
}
開發者ID:martindale,項目名稱:lnd,代碼行數:33,代碼來源:header.go

示例12: Comma

// Ported to math/big.Int from github.com/dustin/go-humanize
func Comma(v *big.Int) string {
	{
		var copy big.Int
		copy.Set(v)
		v = &copy
	}
	sign := ""
	if v.Sign() < 0 {
		sign = "-"
		v.Abs(v)
	}

	tmp := &big.Int{}
	herman := big.NewInt(999)
	thousand := big.NewInt(1000)
	var parts []string

	for v.Cmp(herman) > 0 {
		part := tmp.Mod(v, thousand).String()
		switch len(part) {
		case 2:
			part = "0" + part
		case 1:
			part = "00" + part
		}
		v.Div(v, thousand)
		parts = append(parts, part)
	}
	parts = append(parts, v.String())
	for i, j := 0, len(parts)-1; i < j; i, j = i+1, j-1 {
		parts[i], parts[j] = parts[j], parts[i]
	}
	return sign + strings.Join(parts, ",")
}
開發者ID:BenLubar,項目名稱:Rnoadm,代碼行數:35,代碼來源:comma.go

示例13: doubleJacobian

// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
	delta := new(big.Int).Mul(z, z)
	delta.Mod(delta, curve.P)
	gamma := new(big.Int).Mul(y, y)
	gamma.Mod(gamma, curve.P)
	alpha := new(big.Int).Sub(x, delta)
	if alpha.Sign() == -1 {
		alpha.Add(alpha, curve.P)
	}
	alpha2 := new(big.Int).Add(x, delta)
	alpha.Mul(alpha, alpha2)
	alpha2.Set(alpha)
	alpha.Lsh(alpha, 1)
	alpha.Add(alpha, alpha2)

	beta := alpha2.Mul(x, gamma)

	x3 := new(big.Int).Mul(alpha, alpha)
	beta8 := new(big.Int).Lsh(beta, 3)
	x3.Sub(x3, beta8)
	for x3.Sign() == -1 {
		x3.Add(x3, curve.P)
	}
	x3.Mod(x3, curve.P)

	z3 := new(big.Int).Add(y, z)
	z3.Mul(z3, z3)
	z3.Sub(z3, gamma)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Sub(z3, delta)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Mod(z3, curve.P)

	beta.Lsh(beta, 2)
	beta.Sub(beta, x3)
	if beta.Sign() == -1 {
		beta.Add(beta, curve.P)
	}
	y3 := alpha.Mul(alpha, beta)

	gamma.Mul(gamma, gamma)
	gamma.Lsh(gamma, 3)
	gamma.Mod(gamma, curve.P)

	y3.Sub(y3, gamma)
	if y3.Sign() == -1 {
		y3.Add(y3, curve.P)
	}
	y3.Mod(y3, curve.P)

	return x3, y3, z3
}
開發者ID:h8liu,項目名稱:golang,代碼行數:59,代碼來源:elliptic.go

示例14: times

func times(z *big.Int, x *big.Int, y *big.Int) *big.Int {
	var lim, x1, y1 big.Int
	lim.Exp(big.NewInt(2), big.NewInt(256), big.NewInt(0))
	x1.Set(x)
	y1.Set(y)
	z.Mul(x, y)
	z.Mod(z, &lim)
	return z
}
開發者ID:hiroshi1tanaka,項目名稱:mining,代碼行數:9,代碼來源:mining.go

示例15: JacobiSymbol

// JacobiSymbol returns the jacobi symbol ( N / D ) of
// N (numerator) over D (denominator).
// See http://en.wikipedia.org/wiki/Jacobi_symbol
func JacobiSymbol(N *big.Int, D *big.Int) int {
	//Step 0: parse input / easy cases
	if D.Sign() <= 0 || D.Bit(0) == 0 {
		// we will assume D is positive
		// wolfram is ok with negative denominator
		// im not sure what is standard though
		panic("JacobiSymbol defined for positive odd denominator only")
	}
	var n, d, tmp big.Int
	n.Set(N)
	d.Set(D)
	j := 1
	for {
		// Step 1: Reduce the numerator mod the denominator
		n.Mod(&n, &d)
		if n.Sign() == 0 {
			// if n,d not relatively prime
			return 0
		}
		if len(n.Bits()) >= len(d.Bits())-1 {
			// n > d/2 so swap n with d-n
			// and multiply j by JacobiSymbol(-1 / d)
			n.Sub(&d, &n)
			if d.Bits()[0]&3 == 3 {
				// if d = 3 mod 4
				j = -1 * j
			}
		}

		// Step 2: extract factors of 2
		s := trailingZeroBits(&n)
		n.Rsh(&n, s)
		if s&1 == 1 {
			switch d.Bits()[0] & 7 {
			case 3, 5: // d = 3,5 mod 8
				j = -1 * j
			}
		}

		// Step 3: check numerator
		if len(n.Bits()) == 1 && n.Bits()[0] == 1 {
			// if n = 1 were done
			return j
		}

		// Step 4: flip and go back to step 1
		if n.Bits()[0]&3 != 1 { // n = 3 mod 4
			if d.Bits()[0]&3 != 1 { // d = 3 mod 4
				j = -1 * j
			}
		}
		tmp.Set(&n)
		n.Set(&d)
		d.Set(&tmp)
	}
}
開發者ID:tscholl2,項目名稱:prime,代碼行數:59,代碼來源:utils.go


注:本文中的math/big.Int.Set方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。