當前位置: 首頁>>代碼示例>>Golang>>正文


Golang Int.Rsh方法代碼示例

本文整理匯總了Golang中math/big.Int.Rsh方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.Rsh方法的具體用法?Golang Int.Rsh怎麽用?Golang Int.Rsh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在math/big.Int的用法示例。


在下文中一共展示了Int.Rsh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: StrongMillerRabin

// StrongMillerRabin checks if N is a
// strong Miller-Rabin pseudoprime in base a.
// That is, it checks if a is a witness
// for compositeness of N or if N is a strong
// pseudoprime base a.
//
// Use builtin ProbablyPrime if you want to do a lot
// of random tests, this is for one specific
// base value.
func StrongMillerRabin(N *big.Int, a int64) int {
	// Step 0: parse input
	if N.Sign() < 0 || N.Bit(0) == 0 || a < 2 {
		panic("MR is for positive odd integers with a >= 2")
	}
	A := big.NewInt(a)
	if (a == 2 && N.Bit(0) == 0) || new(big.Int).GCD(nil, nil, N, A).Cmp(one) != 0 {
		return IsComposite
	}

	// Step 1: find d,s, so that n - 1 = d*2^s
	// with d odd
	d := new(big.Int).Sub(N, one)
	s := trailingZeroBits(d)
	d.Rsh(d, s)

	// Step 2: compute powers a^d
	// and then a^(d*2^r) for 0<r<s
	nm1 := new(big.Int).Sub(N, one)
	Ad := new(big.Int).Exp(A, d, N)
	if Ad.Cmp(one) == 0 || Ad.Cmp(nm1) == 0 {
		return Undetermined
	}
	for r := uint(1); r < s; r++ {
		Ad.Exp(Ad, two, N)
		if Ad.Cmp(nm1) == 0 {
			return Undetermined
		}
	}

	// Step 3: a is a witness for compositeness
	return IsComposite
}
開發者ID:tscholl2,項目名稱:prime,代碼行數:42,代碼來源:tests.go

示例2: p256FromBig

// p256FromBig sets out = R*in.
func p256FromBig(out *[p256Limbs]uint32, in *big.Int) {
	tmp := new(big.Int).Lsh(in, 257)
	tmp.Mod(tmp, p256.P)

	for i := 0; i < p256Limbs; i++ {
		if bits := tmp.Bits(); len(bits) > 0 {
			out[i] = uint32(bits[0]) & bottom29Bits
		} else {
			out[i] = 0
		}
		tmp.Rsh(tmp, 29)

		i++
		if i == p256Limbs {
			break
		}

		if bits := tmp.Bits(); len(bits) > 0 {
			out[i] = uint32(bits[0]) & bottom28Bits
		} else {
			out[i] = 0
		}
		tmp.Rsh(tmp, 28)
	}
}
開發者ID:ArtemL,項目名稱:GCC,代碼行數:26,代碼來源:p256.go

示例3: factor

func factor(n *big.Int) (pf []pExp) {
	var e int64
	for ; n.Bit(int(e)) == 0; e++ {
	}
	if e > 0 {
		n.Rsh(n, uint(e))
		pf = []pExp{{big.NewInt(2), e}}
	}
	s := sqrt(n)
	q, r := new(big.Int), new(big.Int)
	for d := big.NewInt(3); n.Cmp(one) > 0; d.Add(d, two) {
		if d.Cmp(s) > 0 {
			d.Set(n)
		}
		for e = 0; ; e++ {
			q.QuoRem(n, d, r)
			if r.BitLen() > 0 {
				break
			}
			n.Set(q)
		}
		if e > 0 {
			pf = append(pf, pExp{new(big.Int).Set(d), e})
			s = sqrt(n)
		}
	}
	return
}
開發者ID:travis1230,項目名稱:RosettaCodeData,代碼行數:28,代碼來源:multiplicative-order.go

示例4: polyPowMod

// polyPowMod computes ``f**n`` in ``GF(p)[x]/(g)`` using repeated squaring.
// Given polynomials ``f`` and ``g`` in ``GF(p)[x]`` and a non-negative
// integer ``n``, efficiently computes ``f**n (mod g)`` i.e. the remainder
// of ``f**n`` from division by ``g``, using the repeated squaring algorithm.
// This function was ported from sympy.polys.galoistools.
func polyPowMod(f *Poly, n *big.Int, g *Poly) (h *Poly, err error) {
	zero := big.NewInt(int64(0))
	one := big.NewInt(int64(1))
	n = big.NewInt(int64(0)).Set(n)
	if n.BitLen() < 3 {
		// Small values of n not useful for recon
		err = powModSmallN
		return
	}
	h = NewPoly(Zi(f.p, 1))
	for {
		if n.Bit(0) > 0 {
			h = NewPoly().Mul(h, f)
			h, err = PolyMod(h, g)
			if err != nil {
				return
			}
			n.Sub(n, one)
		}
		n.Rsh(n, 1)
		if n.Cmp(zero) == 0 {
			break
		}
		f = NewPoly().Mul(f, f)
		f, err = PolyMod(f, g)
		if err != nil {
			return
		}
	}
	return
}
開發者ID:pruthvirajsinh,項目名稱:symflux,代碼行數:36,代碼來源:decode.go

示例5: TestModAdc

func TestModAdc(t *testing.T) {
	A := new(big.Int)
	B := new(big.Int)
	C := new(big.Int)
	Carry := new(big.Int)
	Mask := new(big.Int)
	for _, a := range numbers {
		A.SetUint64(a)
		for _, b := range numbers {
			B.SetUint64(b)
			for width := uint8(1); width < 64; width++ {
				carry := b
				c := mod_adc(a, width, &carry)
				C.Add(A, B)
				Carry.Rsh(C, uint(width))
				expectedCarry := Carry.Uint64()
				Mask.SetUint64(uint64(1)<<width - 1)
				C.And(C, Mask)
				expected := C.Uint64()
				if c != expected || expectedCarry != carry {
					t.Fatalf("adc(%d,%d,%d): Expecting %d carry %d but got %d carry %d", a, b, width, expected, expectedCarry, c, carry)
				}
			}
		}
	}
}
開發者ID:ncw,項目名稱:iprime,代碼行數:26,代碼來源:mod_math_test.go

示例6: bigRsh

func bigRsh(z, x, y *big.Int) *big.Int {
	i := y.Int64()
	if i < 0 {
		panic("negative shift")
	}
	return z.Rsh(x, uint(i))
}
開發者ID:juanman2,項目名稱:dot-emacs,代碼行數:7,代碼來源:ops.go

示例7: ProbablyPrimeBigInt

// ProbablyPrimeBigInt returns true if n is prime or n is a pseudoprime to base
// a. It implements the Miller-Rabin primality test for one specific value of
// 'a' and k == 1.  See also ProbablyPrimeUint32.
func ProbablyPrimeBigInt(n, a *big.Int) bool {
	var d big.Int
	d.Set(n)
	d.Sub(&d, _1) // d <- n-1
	s := 0
	for ; d.Bit(s) == 0; s++ {
	}
	nMinus1 := big.NewInt(0).Set(&d)
	d.Rsh(&d, uint(s))

	x := ModPowBigInt(a, &d, n)
	if x.Cmp(_1) == 0 || x.Cmp(nMinus1) == 0 {
		return true
	}

	for ; s > 1; s-- {
		if x = x.Mod(x.Mul(x, x), n); x.Cmp(_1) == 0 {
			return false
		}

		if x.Cmp(nMinus1) == 0 {
			return true
		}
	}
	return false
}
開發者ID:newobject,項目名稱:camlistore,代碼行數:29,代碼來源:mathutil.go

示例8: encode_int

func (self *Encoder) encode_int(number *big.Int, size uint) []byte {
	if size == 1 {
		return []byte{uint8(int8(number.Int64()))}
	} else if size == 2 {
		number_buf := uint16(int16(number.Int64()))
		return []byte{
			uint8(number_buf >> 8),
			uint8(number_buf),
		}
	} else if size == 4 {
		number_buf := uint32(int32(number.Int64()))
		return []byte{
			uint8(number_buf >> 24),
			uint8(number_buf >> 16),
			uint8(number_buf >> 8),
			uint8(number_buf),
		}
	} else if size == 0 {
		if number.Sign() < 0 {
			panic("jksn: number < 0")
		}
		result := []byte{uint8(new(big.Int).And(number, big.NewInt(0x7f)).Uint64())}
		number.Rsh(number, 7)
		for number.Sign() != 0 {
			result = append(result, uint8(new(big.Int).And(number, big.NewInt(0x7f)).Uint64())|0x80)
			number.Rsh(number, 7)
		}
		for i, j := 0, len(result)-1; i < j; i, j = i+1, j-1 {
			result[i], result[j] = result[j], result[i]
		}
		return result
	} else {
		panic("jksn: size not in (1, 2, 4, 0)")
	}
}
開發者ID:JKSN-format,項目名稱:JKSN-Go,代碼行數:35,代碼來源:jksn.go

示例9: pow

// pow sets d to x ** y and returns z.
func (z *Big) pow(x *Big, y *big.Int) *Big {
	switch {
	case y.Sign() < 0, (x.ez() || y.Sign() == 0):
		return z.SetMantScale(1, 0)
	case y.Cmp(oneInt) == 0:
		return z.Set(x)
	case x.ez():
		if x.isOdd() {
			return z.Set(x)
		}
		z.form = zero
		return z
	}

	x0 := new(Big).Set(x)
	y0 := new(big.Int).Set(y)
	ret := New(1, 0)
	var odd big.Int
	for y0.Sign() > 0 {
		if odd.And(y0, oneInt).Sign() != 0 {
			ret.Mul(ret, x0)
		}
		y0.Rsh(y0, 1)
		x0.Mul(x0, x0)
	}
	*z = *ret
	return ret
}
開發者ID:EricLagergren,項目名稱:decimal,代碼行數:29,代碼來源:log.go

示例10: FromFactorBigInt

/*
FromFactorBigInt returns n such that d | Mn if n <= max and d is odd. In other
cases zero is returned.

It is conjectured that every odd d ∊ N divides infinitely many Mersenne numbers.
The returned n should be the exponent of smallest such Mn.

NOTE: The computation of n from a given d performs roughly in O(n). It is
thus highly recomended to use the 'max' argument to limit the "searched"
exponent upper bound as appropriate. Otherwise the computation can take a long
time as a large factor can be a divisor of a Mn with exponent above the uint32
limits.

The FromFactorBigInt function is a modification of the original Will
Edgington's "reverse method", discussed here:
http://tech.groups.yahoo.com/group/primenumbers/message/15061
*/
func FromFactorBigInt(d *big.Int, max uint32) (n uint32) {
	if d.Bit(0) == 0 {
		return
	}

	var m big.Int
	for n < max {
		m.Add(&m, d)
		i := 0
		for ; m.Bit(i) == 1; i++ {
			if n == math.MaxUint32 {
				return 0
			}

			n++
		}
		m.Rsh(&m, uint(i))
		if m.Sign() == 0 {
			if n > max {
				n = 0
			}
			return
		}
	}
	return 0
}
開發者ID:pombredanne,項目名稱:camlistore,代碼行數:43,代碼來源:mersenne.go

示例11: unsigned_to_signed

func (self *Decoder) unsigned_to_signed(x *big.Int, bits uint) *big.Int {
	// return x - ((x >> (bits - 1)) << bits)
	temp := new(big.Int)
	temp.Rsh(x, bits-1)
	temp.Lsh(temp, bits)
	return temp.Sub(x, temp)
}
開發者ID:JKSN-format,項目名稱:JKSN-Go,代碼行數:7,代碼來源:jksn.go

示例12: Shift

// Shift returns the result of the shift expression x op s
// with op == token.SHL or token.SHR (<< or >>). x must be
// an Int.
//
func Shift(x Value, op token.Token, s uint) Value {
	switch x := x.(type) {
	case unknownVal:
		return x

	case int64Val:
		if s == 0 {
			return x
		}
		switch op {
		case token.SHL:
			z := big.NewInt(int64(x))
			return normInt(z.Lsh(z, s))
		case token.SHR:
			return x >> s
		}

	case intVal:
		if s == 0 {
			return x
		}
		var z big.Int
		switch op {
		case token.SHL:
			return normInt(z.Lsh(x.val, s))
		case token.SHR:
			return normInt(z.Rsh(x.val, s))
		}
	}

	panic(fmt.Sprintf("invalid shift %v %s %d", x, op, s))
}
開發者ID:Bosh-for-Cpi,項目名稱:bosh-2605,代碼行數:36,代碼來源:exact.go

示例13: ratProb

func ratProb(mode int) func(*big.Rat) *big.Rat {
	return func(x *big.Rat) *big.Rat {
		lo := big.NewInt(0)
		hi := new(big.Int).Set(big2p63)
		n := 0
		for lo.Cmp(hi) != 0 {
			m := new(big.Int).Add(lo, hi)
			m = m.Rsh(m, 1)
			if n++; n > 100 {
				fmt.Printf("??? %v %v %v\n", lo, hi, m)
				break
			}
			v := new(big.Rat).SetFrac(m, big2p63)
			f, _ := v.Float64()
			v.SetFloat64(f)
			if v.Cmp(x) < 0 {
				lo.Add(m, bigOne)
			} else {
				hi.Set(m)
			}
		}
		switch mode {
		default: // case 0
			return new(big.Rat).SetFrac(lo, big2p63)
		case 1:
			if lo.Cmp(big.NewInt(cutoff1)) <= 0 {
				lo.Add(lo, big.NewInt(1<<63-cutoff1))
			}
			return new(big.Rat).SetFrac(lo, big2p63)
		case 2:
			return new(big.Rat).SetFrac(lo, big.NewInt(cutoff1))
		}
	}
}
開發者ID:rsc,項目名稱:tmp,代碼行數:34,代碼來源:graph.go

示例14: ISqrt

// ISqrt returns the greatest number x such that x^2 <= n. n must be
// non-negative.
//
// See https://www.akalin.com/computing-isqrt for an analysis.
func ISqrt(n *big.Int) *big.Int {
	s := n.Sign()
	if s < 0 {
		panic("negative radicand")
	}
	if s == 0 {
		return &big.Int{}
	}

	// x = 2^ceil(Bits(n)/2)
	var x big.Int
	x.Lsh(big.NewInt(1), (uint(n.BitLen())+1)/2)
	for {
		// y = floor((x + floor(n/x))/2)
		var y big.Int
		y.Div(n, &x)
		y.Add(&y, &x)
		y.Rsh(&y, 1)

		if y.Cmp(&x) >= 0 {
			return &x
		}
		x = y
	}
}
開發者ID:akalin,項目名稱:iroot,代碼行數:29,代碼來源:isqrt.go

示例15: JacobiSymbol

// JacobiSymbol returns the jacobi symbol ( N / D ) of
// N (numerator) over D (denominator).
// See http://en.wikipedia.org/wiki/Jacobi_symbol
func JacobiSymbol(N *big.Int, D *big.Int) int {
	//Step 0: parse input / easy cases
	if D.Sign() <= 0 || D.Bit(0) == 0 {
		// we will assume D is positive
		// wolfram is ok with negative denominator
		// im not sure what is standard though
		panic("JacobiSymbol defined for positive odd denominator only")
	}
	var n, d, tmp big.Int
	n.Set(N)
	d.Set(D)
	j := 1
	for {
		// Step 1: Reduce the numerator mod the denominator
		n.Mod(&n, &d)
		if n.Sign() == 0 {
			// if n,d not relatively prime
			return 0
		}
		if len(n.Bits()) >= len(d.Bits())-1 {
			// n > d/2 so swap n with d-n
			// and multiply j by JacobiSymbol(-1 / d)
			n.Sub(&d, &n)
			if d.Bits()[0]&3 == 3 {
				// if d = 3 mod 4
				j = -1 * j
			}
		}

		// Step 2: extract factors of 2
		s := trailingZeroBits(&n)
		n.Rsh(&n, s)
		if s&1 == 1 {
			switch d.Bits()[0] & 7 {
			case 3, 5: // d = 3,5 mod 8
				j = -1 * j
			}
		}

		// Step 3: check numerator
		if len(n.Bits()) == 1 && n.Bits()[0] == 1 {
			// if n = 1 were done
			return j
		}

		// Step 4: flip and go back to step 1
		if n.Bits()[0]&3 != 1 { // n = 3 mod 4
			if d.Bits()[0]&3 != 1 { // d = 3 mod 4
				j = -1 * j
			}
		}
		tmp.Set(&n)
		n.Set(&d)
		d.Set(&tmp)
	}
}
開發者ID:tscholl2,項目名稱:prime,代碼行數:59,代碼來源:utils.go


注:本文中的math/big.Int.Rsh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。