本文整理匯總了Golang中math/big.Int.ModInverse方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.ModInverse方法的具體用法?Golang Int.ModInverse怎麽用?Golang Int.ModInverse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math/big.Int
的用法示例。
在下文中一共展示了Int.ModInverse方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: GenerateRevocation
// GenerateRevocation creates a Revocation that revokes the given member
// private key.
func (priv *PrivateKey) GenerateRevocation(mem *MemberKey) *Revocation {
s := new(big.Int).Add(priv.gamma, mem.x)
s.ModInverse(s, bn256.Order)
aStar := new(bn256.G2).ScalarMult(priv.g2, s)
return &Revocation{mem.x, mem.a, aStar}
}
示例2: Decrypt
// Decrypt takes two integers, resulting from an ElGamal encryption, and
// returns the plaintext of the message. An error can result only if the
// ciphertext is invalid. Users should keep in mind that this is a padding
// oracle and thus, if exposed to an adaptive chosen ciphertext attack, can
// be used to break the cryptosystem. See ``Chosen Ciphertext Attacks
// Against Protocols Based on the RSA Encryption Standard PKCS #1'', Daniel
// Bleichenbacher, Advances in Cryptology (Crypto '98),
func Decrypt(priv *PrivateKey, c1, c2 *big.Int) (msg []byte, err error) {
s := new(big.Int).Exp(c1, priv.X, priv.P)
s.ModInverse(s, priv.P)
s.Mul(s, c2)
s.Mod(s, priv.P)
em := s.Bytes()
firstByteIsTwo := subtle.ConstantTimeByteEq(em[0], 2)
// The remainder of the plaintext must be a string of non-zero random
// octets, followed by a 0, followed by the message.
// lookingForIndex: 1 iff we are still looking for the zero.
// index: the offset of the first zero byte.
var lookingForIndex, index int
lookingForIndex = 1
for i := 1; i < len(em); i++ {
equals0 := subtle.ConstantTimeByteEq(em[i], 0)
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
}
if firstByteIsTwo != 1 || lookingForIndex != 0 || index < 9 {
return nil, errors.New("elgamal: decryption error")
}
return em[index+1:], nil
}
示例3: newPrivateKey
//newPrivateKey makes private key from seeds.
func newPrivateKey(pSeed, qSeed big.Int) (*PrivateKey, error) {
q := &qSeed
p := &pSeed
var tmp big.Int
test := big.NewInt(0x7743)
var q1, phi, keyD, keyN big.Int
for count := 0; count < rsaCreateGiveup; count++ {
q = primize(q)
q1.Add(q, tmp.SetInt64(-1))
p = primize(p)
phi.Add(p, tmp.SetInt64(-1))
phi.Mul(&phi, &q1)
keyD.ModInverse(rsaPublicE, &phi)
if keyD.Cmp(tmp.SetInt64(0)) == 0 {
continue
}
keyN.Mul(p, q)
tmp.Exp(test, rsaPublicE, &keyN)
tmp.Exp(&tmp, &keyD, &keyN)
if tmp.Cmp(test) == 0 {
return &PrivateKey{&keyN, &keyD}, nil
}
p.Add(p, tmp.SetInt64(2))
q.Add(q, tmp.SetInt64(2))
}
err := errors.New("cannot generate private key")
log.Fatal(err)
return nil, err
}
示例4: Sign
func (d *ecdsa) Sign(m []byte) (*big.Int, *big.Int) {
h := sha1.New()
if n, err := h.Write(m); n != len(m) || err != nil {
log.Fatal("Error calculating hash")
}
e := h.Sum(nil)
r, s := new(big.Int), new(big.Int)
n := d.g.Size()
z := new(big.Int).SetBytes(e)
z.Mod(z, n)
for r.Cmp(new(big.Int)) == 0 || s.Cmp(new(big.Int)) == 0 {
k := new(big.Int).Rand(rnd, n)
if k.Cmp(new(big.Int)) == 0 {
continue
}
p := d.g.Pow(d.g.Generator(), k)
r.Mod(p.(*ellipticCurveElement).x, n)
k.ModInverse(k, n)
s.Mul(r, d.key)
s.Add(s, z)
s.Mul(s, k)
s.Mod(s, n)
}
return r, s
}
示例5: computeX1
func computeX1(p, g, h, x1 *big.Int) *big.Int {
t1 := new(big.Int).Exp(g, x1, p)
t2 := t1.ModInverse(t1, p)
t3 := t2.Mul(t2, h)
t3.Mod(t3, p)
return t3
}
示例6: main
func main() {
raw, err := ioutil.ReadAll(os.Stdin)
if err != nil {
log.Fatalln(err)
}
raw_strings := strings.Fields(strings.Replace(string(raw), "\n", " ", -1))
p, _ := new(big.Int).SetString(raw_strings[0], 0)
g, _ := new(big.Int).SetString(raw_strings[1], 0)
h, _ := new(big.Int).SetString(raw_strings[2], 0)
B := big.NewInt(2)
B.Exp(B, big.NewInt(20), p)
mitms := make(map[string]*big.Int)
one := big.NewInt(1)
fmt.Println("p:", p)
fmt.Println("g:", g)
fmt.Println("h:", h)
fmt.Println("Started calculating")
for i := big.NewInt(0); i.Cmp(B) != 0; i.Add(i, one) {
ex := new(big.Int).Exp(g, i, p)
ex.ModInverse(ex, p)
res := ex.Mul(ex, h)
res.Mod(res, p)
mitms[res.String()] = new(big.Int).Set(i)
}
fmt.Println("Calculated x1s")
var x1, x0 *big.Int
var ok bool
for i := big.NewInt(0); i.Cmp(B) != 0; i.Add(i, one) {
r := new(big.Int).Exp(g, B, p)
r.Exp(r, i, p)
if x1, ok = mitms[r.String()]; ok {
x0 = new(big.Int).Set(i)
fmt.Println("Found x0", x0, "x1", x1)
break
}
}
if x1 == nil || x0 == nil {
fmt.Println("Something went wrong - no solution")
} else {
x := x0.Mul(x0, B)
x.Add(x, x1)
fmt.Println(x)
}
}
示例7: Div
// Set to a * b^-1 mod M, where b^-1 is the modular inverse of b.
func (i *Int) Div(a, b abstract.Secret) abstract.Secret {
ai := a.(*Int)
bi := b.(*Int)
var t big.Int
i.M = ai.M
i.V.Mul(&ai.V, t.ModInverse(&bi.V, i.M))
i.V.Mod(&i.V, i.M)
return i
}
示例8: Div
// returns (P / Q, P % Q)
func (p Poly) Div(q Poly, m *big.Int) (quo, rem Poly) {
if m != nil {
p.sanitize(m)
q.sanitize(m)
}
if p.GetDegree() < q.GetDegree() || q.isZero() {
quo = NewPolyInts(0)
rem = p.Clone(0)
return
}
quo = make([]*big.Int, p.GetDegree()-q.GetDegree()+1)
rem = p.Clone(0)
for i := 0; i < len(quo); i++ {
quo[i] = big.NewInt(0)
}
t := p.Clone(0)
qd := q.GetDegree()
for {
td := t.GetDegree()
rd := td - qd
if rd < 0 || t.isZero() {
rem = t
break
}
r := new(big.Int)
if m != nil {
r.ModInverse(q[qd], m)
r.Mul(r, t[td])
r.Mod(r, m)
} else {
r.Div(t[td], q[qd])
}
// if r == 0, it means that the highest coefficient of the result is not an integer
// this polynomial library handles integer coefficients
if r.Cmp(big.NewInt(0)) == 0 {
quo = NewPolyInts(0)
rem = p.Clone(0)
return
}
u := q.Clone(rd)
for i := rd; i < len(u); i++ {
u[i].Mul(u[i], r)
if m != nil {
u[i].Mod(u[i], m)
}
}
t = t.Sub(u, m)
t.trim()
quo[rd] = r
}
quo.trim()
rem.trim()
return
}
示例9: main
func main() {
pi := new(big.Int)
pi.SetString("7199773997391911030609999317773941274322764333428698921736339643928346453700085358802973900485592910475480089726140708102474957429903531369589969318716771", 10)
gi := new(big.Int)
gi.SetString("4565356397095740655436854503483826832136106141639563487732438195343690437606117828318042418238184896212352329118608100083187535033402010599512641674644143", 10)
q := new(big.Int)
q.SetString("236234353446506858198510045061214171961", 10)
G := dh.NewFiniteGroup(*pi)
g := dh.NewFiniteElement(G, *gi)
GG := dh.NewGeneratedGroup(G, g, *q)
d := dh.NewDiffieHellman(GG)
factors := dh.FindCoFactors(q, pi, G)
moduli := make(map[int64]int64)
total := big.NewInt(1)
for factor, h := range factors {
total.Mul(total, big.NewInt(factor))
mac := Bob(d, h)
log.Printf("Guessing the shared secret in the subgroup of order %d", factor)
found := false
for i := int64(1); i <= factor; i++ {
k := G.Pow(h, big.NewInt(i))
if hmac.Equal(mac, Sign(secretMessage, k)) {
//log.Printf("%d^%d", elt, i)
found = true
moduli[factor] = i
break
}
}
if !found {
panic("Could not guess the shared secret")
}
}
// From Wikipedia CRT page
x := new(big.Int)
for n, a := range moduli {
N := new(big.Int).Set(total)
N.Div(N, big.NewInt(n))
N.ModInverse(N, big.NewInt(n))
N.Mul(N, total)
N.Div(N, big.NewInt(n))
N.Mul(N, big.NewInt(a))
x.Add(x, N)
x.Mod(x, total)
}
log.Printf("Predicted key: %d", x)
log.Printf("%s", d)
}
示例10: chosenEncrytion
// Returns (N, e, d) of the given size that encrypts decBytes to encBytes
func chosenEncrytion(decBytes, encBytes []byte, keySize int) (N, e, d *big.Int) {
padM := new(big.Int).SetBytes(encBytes)
sig := new(big.Int).SetBytes(decBytes)
eveP, evePFactors := choosePrime(keySize/2, padM, sig, nil)
eveQ, eveQFactors := choosePrime(keySize/2, padM, sig, evePFactors)
eveN := new(big.Int).Mul(eveP, eveQ)
ep := pohlig(padM, sig, eveP, evePFactors)
eq := pohlig(padM, sig, eveQ, eveQFactors)
evePhi := new(big.Int).Set(eveN)
evePhi.Sub(evePhi, eveP)
evePhi.Sub(evePhi, eveQ)
evePhi.Add(evePhi, big.NewInt(1))
// From Wikipedia CRT page
eveModuli := make(map[*big.Int]*big.Int)
newP := new(big.Int).Sub(eveP, big.NewInt(1))
newQ := new(big.Int).Sub(eveQ, big.NewInt(1))
// Remove "2" factor so CRT works.
newP.Div(newP, big.NewInt(2))
newQ.Div(newQ, big.NewInt(2))
eveModuli[newP] = new(big.Int).Mod(ep, newP)
eveModuli[newQ] = new(big.Int).Mod(eq, newQ)
if new(big.Int).Mod(eq, big.NewInt(2)).Cmp(new(big.Int).Mod(ep, big.NewInt(2))) != 0 {
log.Fatal("ep and eq are not compatible and CRT won't work")
}
eveModuli[big.NewInt(4)] = new(big.Int).Mod(eq, big.NewInt(4))
eveE := new(big.Int)
for n, a := range eveModuli {
N := new(big.Int).Set(evePhi)
scratch := new(big.Int)
scratch.Mod(N, n)
if scratch.Cmp(new(big.Int)) != 0 {
log.Fatalf("hmm %d / %d", N, n)
}
N.Div(N, n)
scratch.GCD(nil, nil, N, n)
if scratch.Cmp(big.NewInt(1)) != 0 {
log.Fatalf("GCD: %d", scratch)
}
N.ModInverse(N, n)
N.Mul(N, evePhi)
N.Div(N, n)
N.Mul(N, a)
eveE.Add(eveE, N)
eveE.Mod(eveE, evePhi)
}
return eveN, eveE, new(big.Int).ModInverse(eveE, evePhi)
}
示例11: double
/* R = 2P */
func (R *Point) double(P *Point, C *Curve) *Point {
//If at infinity
if P.inf {
R.SetInf()
} else {
//Calculate slope
//s = (3*Px² + a) / (2*Py) mod p
t1 := new(big.Int).Exp(P.x, big.NewInt(2), C.p) // t1 = Px² mod p
s := new(big.Int).Mul(t1, big.NewInt(3)) // s = 3 * t1
s.Mod(s, C.p) // s = s mod p
s.Add(s, C.a) // s = s + a mod p
s.Mod(s, C.p)
sd := new(big.Int).Mul(big.NewInt(2), P.y)
sd.ModInverse(sd, C.p) // sd = 1 / 2*Py mod p
s.Mul(s, sd) // s = (s / sd) mod p
s.Mod(s, C.p)
//Calculate Rx
//Rx = s² - 2*Px mod p
s2 := new(big.Int).Exp(s, big.NewInt(2), C.p) //s2 = s²
s2.Mod(s2, C.p)
t := new(big.Int).Mul(P.x, big.NewInt(2)) // t = 2*Px mod p
t.Mod(t, C.p)
t.Sub(s2, t) // Rx = s2 - t mod p
R.x.Mod(t, C.p)
//Calculate Ry using algorithm shown to the right of the commands
//Ry = s(Px-Rx) - Py mod p
t.Sub(P.x, R.x) //t = Px - Rx mod p
t.Mod(t, C.p)
t.Mul(s, t) //t = s * t mod p
t.Mod(t, C.p)
t.Sub(t, P.y) //t = t - Py mod p
R.y.Mod(t, C.p)
// mpz_mod(R->y, t3, curve->p); //Ry = t3 mod p
}
return R
}
示例12: q1
func q1() {
n := new(big.Int)
sqrtN := new(big.Int)
a := new(big.Int)
asquared := new(big.Int)
one := new(big.Int)
x := new(big.Int)
xsquared := new(big.Int)
//p := new(big.Int)
n.SetString("179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581", 10)
one.SetString("1", 10)
sqrtN = mathutil.SqrtBig(n)
a.Add(sqrtN, one)
asquared.Mul(a, a)
xsquared.Sub(asquared, n)
x = mathutil.SqrtBig(xsquared)
p := new(big.Int)
q := new(big.Int)
p.Sub(a, x)
q.Add(a, x)
fmt.Println(a.Sub(a, x).String())
d := new(big.Int)
phiN := new(big.Int)
phiN.Mul(p.Sub(p, one), q.Sub(q, one))
e := new(big.Int)
e.SetString("65537", 10)
//get my decryption exponent
d.ModInverse(e, phiN)
c := new(big.Int)
c.SetString("22096451867410381776306561134883418017410069787892831071731839143676135600120538004282329650473509424343946219751512256465839967942889460764542040581564748988013734864120452325229320176487916666402997509188729971690526083222067771600019329260870009579993724077458967773697817571267229951148662959627934791540", 10)
m := new(big.Int)
m.Exp(c, d, n)
fmt.Println("decrypted message:")
fmt.Printf("%x\n", m.Bytes())
//020805907610b524330594e51d5dbbf643f09603731e9817111392d0c64e2739959a092d4daf979d387520ea7e577af9eb50a29f736925e810ab2fb4640e091a0f73252cb669d5b62b26764190ed188239fe71e1a7cb9e935d2db55c98b024e1dae46d00
answer, _ := hex.DecodeString("466163746f72696e67206c65747320757320627265616b205253412e")
fmt.Printf("%s\n", answer)
}
示例13: ModInverse
// Calculates the Modular Inverse of a given Prime number such that
// (PRIME * MODULAR_INVERSE) & (MAX_INT_VALUE) = 1
// Panics if n is not a valid prime number.
// See: http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
func ModInverse(n uint64) uint64 {
p := big.NewInt(int64(n))
if !p.ProbablyPrime(MILLER_RABIN) {
accuracy := 1.0 - 1.0/math.Pow(float64(4), float64(MILLER_RABIN))
panic(jsonerror.New(2, "Number is not prime", fmt.Sprintf("n=%d. %d Miller-Rabin tests done. Accuracy: %f", n, MILLER_RABIN, accuracy)))
}
var i big.Int
prime := big.NewInt(int64(n))
max := big.NewInt(int64(MAX_INT + 1))
return i.ModInverse(prime, max).Uint64()
}
示例14: TestModInv
func TestModInv(t *testing.T) {
A := new(big.Int)
B := new(big.Int)
for _, a := range numbers {
if a == 0 {
continue
}
A.SetUint64(a)
b := mod_inv(a)
B.ModInverse(A, P)
expected := B.Uint64()
if b != expected {
t.Fatalf("inv(%d): Expecting %d but got %d", a, expected, b)
}
}
}
示例15: crt
func crt(N *big.Int, moduli map[int64]int64) *big.Int {
// From Wikipedia CRT page
x := new(big.Int)
total := N
for n, a := range moduli {
N := new(big.Int).Set(total)
N.Div(N, big.NewInt(n))
N.ModInverse(N, big.NewInt(n))
N.Mul(N, total)
N.Div(N, big.NewInt(n))
N.Mul(N, big.NewInt(a))
x.Add(x, N)
x.Mod(x, total)
}
return x
}