本文整理匯總了Golang中math/big.Int.Neg方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.Neg方法的具體用法?Golang Int.Neg怎麽用?Golang Int.Neg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math/big.Int
的用法示例。
在下文中一共展示了Int.Neg方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: readBigInt
func readBigInt(r io.Reader, b []byte, sign byte) (interface{}, error) {
if _, err := io.ReadFull(r, b); err != nil {
return nil, err
}
size := len(b)
hsize := size >> 1
for i := 0; i < hsize; i++ {
b[i], b[size-i-1] = b[size-i-1], b[i]
}
v := new(big.Int).SetBytes(b)
if sign != 0 {
v = v.Neg(v)
}
// try int and int64
v64 := v.Int64()
if x := int(v64); v.Cmp(big.NewInt(int64(x))) == 0 {
return x, nil
} else if v.Cmp(big.NewInt(v64)) == 0 {
return v64, nil
}
return v, nil
}
示例2: roundHalf
func roundHalf(f func(c int, odd uint) (roundUp bool)) func(z, q *Dec, rA, rB *big.Int) *Dec {
return func(z, q *Dec, rA, rB *big.Int) *Dec {
z.Set(q)
brA, brB := rA.BitLen(), rB.BitLen()
if brA < brB-1 {
// brA < brB-1 => |rA| < |rB/2|
return z
}
roundUp := false
srA, srB := rA.Sign(), rB.Sign()
s := srA * srB
if brA == brB-1 {
rA2 := new(big.Int).Lsh(rA, 1)
if s < 0 {
rA2.Neg(rA2)
}
roundUp = f(rA2.Cmp(rB)*srB, z.UnscaledBig().Bit(0))
} else {
// brA > brB-1 => |rA| > |rB/2|
roundUp = true
}
if roundUp {
z.UnscaledBig().Add(z.UnscaledBig(), intSign[s+1])
}
return z
}
}
示例3: ToBase
// ToBase produces n in base b. For example
//
// ToBase(2047, 22) -> [1, 5, 4]
//
// 1 * 22^0 1
// 5 * 22^1 110
// 4 * 22^2 1936
// ----
// 2047
//
// ToBase panics for bases < 2.
func ToBase(n *big.Int, b int) []int {
var nn big.Int
nn.Set(n)
if b < 2 {
panic("invalid base")
}
k := 1
switch nn.Sign() {
case -1:
nn.Neg(&nn)
k = -1
case 0:
return []int{0}
}
bb := big.NewInt(int64(b))
var r []int
rem := big.NewInt(0)
for nn.Sign() != 0 {
nn.QuoRem(&nn, bb, rem)
r = append(r, k*int(rem.Int64()))
}
return r
}
示例4: String
func (v *Value) String() string {
if v.IsZero() {
return "0"
}
if v.Native && v.IsScientific() {
value := strconv.FormatUint(v.Num, 10)
offset := strconv.FormatInt(v.Offset, 10)
if v.Negative {
return "-" + value + "e" + offset
}
return value + "e" + offset
}
value := big.NewInt(int64(v.Num))
if v.Negative {
value.Neg(value)
}
var offset *big.Int
if v.Native {
offset = big.NewInt(-6)
} else {
offset = big.NewInt(v.Offset)
}
exp := offset.Exp(bigTen, offset.Neg(offset), nil)
rat := big.NewRat(0, 1).SetFrac(value, exp)
left := rat.FloatString(0)
if rat.IsInt() {
return left
}
length := len(left)
if v.Negative {
length -= 1
}
return strings.TrimRight(rat.FloatString(32-length), "0")
}
示例5: TestPoint
// TestPoint verifies that a point (x1,y2) does not equal another point (x1,y2) or it's reflection on 0
func (curve Curve) TestPoint(x1, y1, x2, y2 *big.Int) (bool, error) {
_, err := curve.TestCoordinate(x1)
if err != nil {
return false, err
}
_, err = curve.TestCoordinate(x2)
if err != nil {
return false, err
}
if x1.Cmp(x1) == 0 && y1.Cmp(y2) == 0 { // Same
return false, ErrCoordinateBase
}
if x1.Cmp(y1) == 0 && y1.Cmp(x2) == 0 { // Reflect
return false, ErrCoordinateBase
}
x2neg := new(big.Int)
x2neg = x2neg.Neg(x2)
y2neg := new(big.Int)
y2neg = y2neg.Neg(y2)
if x1.Cmp(x2neg) == 0 {
return false, ErrCoordinateBase
}
if x1.Cmp(y2neg) == 0 && y1.Cmp(x2neg) == 0 {
return false, ErrCoordinateBase
}
return true, nil
}
示例6: CompactToBig
// CompactToBig converts a compact representation of a whole number N to an
// unsigned 32-bit number. The representation is similar to IEEE754 floating
// point numbers.
//
// Like IEEE754 floating point, there are three basic components: the sign,
// the exponent, and the mantissa. They are broken out as follows:
//
// * the most significant 8 bits represent the unsigned base 256 exponent
// * bit 23 (the 24th bit) represents the sign bit
// * the least significant 23 bits represent the mantissa
//
// -------------------------------------------------
// | Exponent | Sign | Mantissa |
// -------------------------------------------------
// | 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] |
// -------------------------------------------------
//
// The formula to calculate N is:
// N = (-1^sign) * mantissa * 256^(exponent-3)
//
// This compact form is only used in bitcoin to encode unsigned 256-bit numbers
// which represent difficulty targets, thus there really is not a need for a
// sign bit, but it is implemented here to stay consistent with bitcoind.
func CompactToBig(compact uint32) *big.Int {
// Extract the mantissa, sign bit, and exponent.
mantissa := compact & 0x007fffff
isNegative := compact&0x00800000 != 0
exponent := uint(compact >> 24)
// Since the base for the exponent is 256, the exponent can be treated
// as the number of bytes to represent the full 256-bit number. So,
// treat the exponent as the number of bytes and shift the mantissa
// right or left accordingly. This is equivalent to:
// N = mantissa * 256^(exponent-3)
var bn *big.Int
if exponent <= 3 {
mantissa >>= 8 * (3 - exponent)
bn = big.NewInt(int64(mantissa))
} else {
bn = big.NewInt(int64(mantissa))
bn.Lsh(bn, 8*(exponent-3))
}
// Make it negative if the sign bit is set.
if isNegative {
bn = bn.Neg(bn)
}
return bn
}
示例7: floatString
func (i BigInt) floatString(verb byte, prec int) string {
switch verb {
case 'f', 'F':
str := fmt.Sprintf("%d", i.Int)
if prec > 0 {
str += "." + zeros(prec)
}
return str
case 'e', 'E':
// The exponent will alway be >= 0.
sign := ""
var x big.Int
x.Set(i.Int)
if x.Sign() < 0 {
sign = "-"
x.Neg(&x)
}
return eFormat(verb, prec, sign, x.String(), eExponent(&x))
case 'g', 'G':
// Exponent is always positive so it's easy.
var x big.Int
x.Set(i.Int)
if eExponent(&x) >= prec {
// Use e format.
verb -= 2 // g becomes e.
return trimEZeros(verb, i.floatString(verb, prec-1))
}
// Use f format, but this is just an integer.
return fmt.Sprintf("%d", i.Int)
default:
Errorf("can't handle verb %c for big int", verb)
}
return ""
}
示例8: Neg
// Neg() returns a polynomial Q = -P
func (p *Poly) Neg() Poly {
var q Poly = make([]*big.Int, len(*p))
for i := 0; i < len(*p); i++ {
b := new(big.Int)
b.Neg((*p)[i])
q[i] = b
}
return q
}
示例9: unaryIntOp
func unaryIntOp(x *big.Int, op token.Token) interface{} {
var z big.Int
switch op {
case token.ADD:
return z.Set(x)
case token.SUB:
return z.Neg(x)
case token.XOR:
return z.Not(x)
}
panic("unreachable")
}
示例10: Bytes
func (d Decimal) Bytes() []byte {
bytes := make([]byte, 16)
binary.BigEndian.PutUint32(bytes[0:4], d.integer[3])
binary.BigEndian.PutUint32(bytes[4:8], d.integer[2])
binary.BigEndian.PutUint32(bytes[8:12], d.integer[1])
binary.BigEndian.PutUint32(bytes[12:16], d.integer[0])
var x big.Int
x.SetBytes(bytes)
if !d.positive {
x.Neg(&x)
}
return scaleBytes(x.String(), d.scale)
}
示例11: trunc
// trunc truncates a value to the range of the given type.
func (t *_type) trunc(x *big.Int) *big.Int {
r := new(big.Int)
m := new(big.Int)
m.Lsh(one, t.bits)
m.Sub(m, one)
r.And(x, m)
if t.signed && r.Bit(int(t.bits)-1) == 1 {
m.Neg(one)
m.Lsh(m, t.bits)
r.Or(r, m)
}
return r
}
示例12: eExponent
// eExponent returns the exponent to use to display i in 1.23e+04 format.
func eExponent(x *big.Int) int {
if x.Sign() < 0 {
x.Neg(x)
}
e := 0
for x.Cmp(bigIntBillion) >= 0 {
e += 9
x.Quo(x, bigIntBillion)
}
for x.Cmp(bigIntTen) >= 0 {
e++
x.Quo(x, bigIntTen)
}
return e
}
示例13: testNegativeInputs
func testNegativeInputs(t *testing.T, curve elliptic.Curve, tag string) {
key, err := GenerateKey(curve, rand.Reader)
if err != nil {
t.Errorf("failed to generate key for %q", tag)
}
var hash [32]byte
r := new(big.Int).SetInt64(1)
r.Lsh(r, 550 /* larger than any supported curve */)
r.Neg(r)
if Verify(&key.PublicKey, hash[:], r, r) {
t.Errorf("bogus signature accepted for %q", tag)
}
}
示例14: instantiateINTEGER
func instantiateINTEGER(inst *Instance, data interface{}, p *pathNode) (*Instance, error) {
switch data := data.(type) {
case *UnmarshalledPrimitive:
if len(data.Data) == 0 {
return nil, fmt.Errorf("%vAttempt to instantiate INTEGER from empty DER data", p)
}
var b big.Int
b.SetBytes(data.Data)
if data.Data[0]&128 != 0 { // negative number
var x big.Int
x.SetBit(&x, len(data.Data)*8, 1)
x.Sub(&x, &b)
b.Neg(&x)
}
return instantiateINTEGER(inst, &b, p)
case *Instance:
inst.value = data.value
case *big.Int:
i := int(data.Int64())
if big.NewInt(int64(i)).Cmp(data) == 0 {
inst.value = i // store as int if possible
} else {
inst.value = data // use *big.Int if necessary
}
case int:
inst.value = data
case float64:
if math.Floor(data) != data {
return nil, fmt.Errorf("%vAttempt to instantiate INTEGER with non-integral float64: %v", p, data)
}
inst.value = int(data)
case string:
if i, found := inst.namedints[data]; found {
inst.value = i
} else {
bi := new(big.Int)
_, ok := bi.SetString(data, 10)
if ok {
return instantiateINTEGER(inst, bi, p)
} else {
return nil, fmt.Errorf("%vAttempt to instantiate INTEGER/ENUMERATED from illegal string: %v", p, data)
}
}
default:
return nil, instantiateTypeError(p, "INTEGER", data)
}
return inst, nil
}
示例15: parseBigInt
// parseBigInt treats the given bytes as a big-endian, signed integer and returns
// the result.
func parseBigInt(bytes []byte) *big.Int {
ret := new(big.Int)
if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
// This is a negative number.
notBytes := make([]byte, len(bytes))
for i := range notBytes {
notBytes[i] = ^bytes[i]
}
ret.SetBytes(notBytes)
ret.Add(ret, bigOne)
ret.Neg(ret)
return ret
}
ret.SetBytes(bytes)
return ret
}