當前位置: 首頁>>代碼示例>>Golang>>正文


Golang Int.Lsh方法代碼示例

本文整理匯總了Golang中math/big.Int.Lsh方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.Lsh方法的具體用法?Golang Int.Lsh怎麽用?Golang Int.Lsh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在math/big.Int的用法示例。


在下文中一共展示了Int.Lsh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: unsigned_to_signed

func (self *Decoder) unsigned_to_signed(x *big.Int, bits uint) *big.Int {
	// return x - ((x >> (bits - 1)) << bits)
	temp := new(big.Int)
	temp.Rsh(x, bits-1)
	temp.Lsh(temp, bits)
	return temp.Sub(x, temp)
}
開發者ID:JKSN-format,項目名稱:JKSN-Go,代碼行數:7,代碼來源:jksn.go

示例2: encodeBlock

// encodeBlock fills the dst buffer with the encoding of src.
// It is assumed the buffers are appropriately sized, and no
// bounds checks are performed.  In particular, the dst buffer will
// be zero-padded from right to left in all remaining bytes.
func (enc *Encoding) encodeBlock(dst, src []byte) {

	// Interpret the block as a big-endian number (Go's default)
	num := new(big.Int).SetBytes(src)
	rem := new(big.Int)
	quo := new(big.Int)

	encodedLen := enc.EncodedLen(len(src))

	// Shift over the given number of extra Bits, so that all of our
	// wasted bits are on the right.
	num = num.Lsh(num, enc.extraBits(len(src), encodedLen))

	p := encodedLen - 1

	for num.Sign() != 0 {
		num, rem = quo.QuoRem(num, enc.baseBig, rem)
		dst[p] = enc.encode[rem.Uint64()]
		p--
	}

	// Pad the remainder of the buffer with 0s
	for p >= 0 {
		dst[p] = enc.encode[0]
		p--
	}
}
開發者ID:polluks,項目名稱:client,代碼行數:31,代碼來源:encoding.go

示例3: TestP256BaseMult

func TestP256BaseMult(t *testing.T) {
	p256 := P256()
	p256Generic := p256.Params()

	scalars := make([]*big.Int, 0, len(p224BaseMultTests)+1)
	for _, e := range p224BaseMultTests {
		k, _ := new(big.Int).SetString(e.k, 10)
		scalars = append(scalars, k)
	}
	k := new(big.Int).SetInt64(1)
	k.Lsh(k, 500)
	scalars = append(scalars, k)

	for i, k := range scalars {
		x, y := p256.ScalarBaseMult(k.Bytes())
		x2, y2 := p256Generic.ScalarBaseMult(k.Bytes())
		if x.Cmp(x2) != 0 || y.Cmp(y2) != 0 {
			t.Errorf("#%d: got (%x, %x), want (%x, %x)", i, x, y, x2, y2)
		}

		if testing.Short() && i > 5 {
			break
		}
	}
}
開發者ID:h8liu,項目名稱:golang,代碼行數:25,代碼來源:elliptic_test.go

示例4: bigIntFromFloat

// "stolen" from https://golang.org/pkg/math/big/#Rat.SetFloat64
// Removed non-finite case because we already check for
// Inf/NaN values
func bigIntFromFloat(f float64) *big.Int {
	const expMask = 1<<11 - 1
	bits := math.Float64bits(f)
	mantissa := bits & (1<<52 - 1)
	exp := int((bits >> 52) & expMask)
	if exp == 0 { // denormal
		exp -= 1022
	} else { // normal
		mantissa |= 1 << 52
		exp -= 1023
	}

	shift := 52 - exp

	// Optimization (?): partially pre-normalise.
	for mantissa&1 == 0 && shift > 0 {
		mantissa >>= 1
		shift--
	}

	if shift < 0 {
		shift = -shift
	}

	var a big.Int
	a.SetUint64(mantissa)
	return a.Lsh(&a, uint(shift))
}
開發者ID:patrickToca,項目名稱:decimal,代碼行數:31,代碼來源:decimal.go

示例5: Shift

// Shift returns the result of the shift expression x op s
// with op == token.SHL or token.SHR (<< or >>). x must be
// an Int.
//
func Shift(x Value, op token.Token, s uint) Value {
	switch x := x.(type) {
	case unknownVal:
		return x

	case int64Val:
		if s == 0 {
			return x
		}
		switch op {
		case token.SHL:
			z := big.NewInt(int64(x))
			return normInt(z.Lsh(z, s))
		case token.SHR:
			return x >> s
		}

	case intVal:
		if s == 0 {
			return x
		}
		var z big.Int
		switch op {
		case token.SHL:
			return normInt(z.Lsh(x.val, s))
		case token.SHR:
			return normInt(z.Rsh(x.val, s))
		}
	}

	panic(fmt.Sprintf("invalid shift %v %s %d", x, op, s))
}
開發者ID:Bosh-for-Cpi,項目名稱:bosh-2605,代碼行數:36,代碼來源:exact.go

示例6: bigLsh

func bigLsh(z, x, y *big.Int) *big.Int {
	i := y.Int64()
	if i < 0 {
		panic("negative shift")
	}
	return z.Lsh(x, uint(i))
}
開發者ID:juanman2,項目名稱:dot-emacs,代碼行數:7,代碼來源:ops.go

示例7: MakeRandom

func MakeRandom(gen *rand.Rand, degree int) *Polynomial {
	if degree == 0 {
		return NewPolynomialFromInt(gen.Int63n(2))
	}

	coeffs := new(big.Int)
	// x^0 + x^1 + ... + x^n => n + 1 terms
	// However, only the first n terms are variable.  (x^n is fixed to
	// have degree n.)  Thus, we randomly generate the first n terms
	// and fix the final term x^n.
	numBits := degree
	numBlocks := numBits / 32
	for ii := 0; ii < numBlocks; ii++ {
		v := gen.Uint32()

		// Merge.
		bigV := big.NewInt(int64(v))
		coeffs.Lsh(coeffs, 32).Or(coeffs, bigV)
	}
	// Handle the remainder.
	numRemainingBits := uint(numBits % 32)
	if numRemainingBits > 0 {
		mask := (int64(1) << numRemainingBits) - 1
		v := int64(gen.Uint32()) & mask
		coeffs.Lsh(coeffs, numRemainingBits).Or(coeffs, big.NewInt(v))
	}
	coeffs.SetBit(coeffs, degree, 1)
	return NewPolynomial(uint(degree), coeffs)
}
開發者ID:lumjjb,項目名稱:rabin,代碼行數:29,代碼來源:util.go

示例8: ISqrt

// ISqrt returns the greatest number x such that x^2 <= n. n must be
// non-negative.
//
// See https://www.akalin.com/computing-isqrt for an analysis.
func ISqrt(n *big.Int) *big.Int {
	s := n.Sign()
	if s < 0 {
		panic("negative radicand")
	}
	if s == 0 {
		return &big.Int{}
	}

	// x = 2^ceil(Bits(n)/2)
	var x big.Int
	x.Lsh(big.NewInt(1), (uint(n.BitLen())+1)/2)
	for {
		// y = floor((x + floor(n/x))/2)
		var y big.Int
		y.Div(n, &x)
		y.Add(&y, &x)
		y.Rsh(&y, 1)

		if y.Cmp(&x) >= 0 {
			return &x
		}
		x = y
	}
}
開發者ID:akalin,項目名稱:iroot,代碼行數:29,代碼來源:isqrt.go

示例9: CompactToBig

// CompactToBig converts a compact representation of a whole number N to an
// unsigned 32-bit number.  The representation is similar to IEEE754 floating
// point numbers.
//
// Like IEEE754 floating point, there are three basic components: the sign,
// the exponent, and the mantissa.  They are broken out as follows:
//
//	* the most significant 8 bits represent the unsigned base 256 exponent
// 	* bit 23 (the 24th bit) represents the sign bit
//	* the least significant 23 bits represent the mantissa
//
//	-------------------------------------------------
//	|   Exponent     |    Sign    |    Mantissa     |
//	-------------------------------------------------
//	| 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] |
//	-------------------------------------------------
//
// The formula to calculate N is:
// 	N = (-1^sign) * mantissa * 256^(exponent-3)
//
// This compact form is only used in bitcoin to encode unsigned 256-bit numbers
// which represent difficulty targets, thus there really is not a need for a
// sign bit, but it is implemented here to stay consistent with bitcoind.
func CompactToBig(compact uint32) *big.Int {
	// Extract the mantissa, sign bit, and exponent.
	mantissa := compact & 0x007fffff
	isNegative := compact&0x00800000 != 0
	exponent := uint(compact >> 24)

	// Since the base for the exponent is 256, the exponent can be treated
	// as the number of bytes to represent the full 256-bit number.  So,
	// treat the exponent as the number of bytes and shift the mantissa
	// right or left accordingly.  This is equivalent to:
	// N = mantissa * 256^(exponent-3)
	var bn *big.Int
	if exponent <= 3 {
		mantissa >>= 8 * (3 - exponent)
		bn = big.NewInt(int64(mantissa))
	} else {
		bn = big.NewInt(int64(mantissa))
		bn.Lsh(bn, 8*(exponent-3))
	}

	// Make it negative if the sign bit is set.
	if isNegative {
		bn = bn.Neg(bn)
	}

	return bn
}
開發者ID:rahulxkrishna,項目名稱:btcd,代碼行數:50,代碼來源:difficulty.go

示例10: doubleJacobian

// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
	delta := new(big.Int).Mul(z, z)
	delta.Mod(delta, curve.P)
	gamma := new(big.Int).Mul(y, y)
	gamma.Mod(gamma, curve.P)
	alpha := new(big.Int).Sub(x, delta)
	if alpha.Sign() == -1 {
		alpha.Add(alpha, curve.P)
	}
	alpha2 := new(big.Int).Add(x, delta)
	alpha.Mul(alpha, alpha2)
	alpha2.Set(alpha)
	alpha.Lsh(alpha, 1)
	alpha.Add(alpha, alpha2)

	beta := alpha2.Mul(x, gamma)

	x3 := new(big.Int).Mul(alpha, alpha)
	beta8 := new(big.Int).Lsh(beta, 3)
	x3.Sub(x3, beta8)
	for x3.Sign() == -1 {
		x3.Add(x3, curve.P)
	}
	x3.Mod(x3, curve.P)

	z3 := new(big.Int).Add(y, z)
	z3.Mul(z3, z3)
	z3.Sub(z3, gamma)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Sub(z3, delta)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Mod(z3, curve.P)

	beta.Lsh(beta, 2)
	beta.Sub(beta, x3)
	if beta.Sign() == -1 {
		beta.Add(beta, curve.P)
	}
	y3 := alpha.Mul(alpha, beta)

	gamma.Mul(gamma, gamma)
	gamma.Lsh(gamma, 3)
	gamma.Mod(gamma, curve.P)

	y3.Sub(y3, gamma)
	if y3.Sign() == -1 {
		y3.Add(y3, curve.P)
	}
	y3.Mod(y3, curve.P)

	return x3, y3, z3
}
開發者ID:h8liu,項目名稱:golang,代碼行數:59,代碼來源:elliptic.go

示例11: base64ToInt

//base64ToInt makes int from string.
func base64ToInt(s string) *big.Int {
	var tmp big.Int
	sb := []byte(s)
	for i := len(sb) - 1; i >= 0; i-- {
		b := big.NewInt(base64de[sb[i]])
		tmp.Lsh(&tmp, 6).Or(&tmp, b)
	}
	return &tmp
}
開發者ID:shingetsu-gou,項目名稱:shingetsu-gou,代碼行數:10,代碼來源:apollo.go

示例12: main

func main() {
	i := new(big.Int)

	// 2^1000 == 1 << 1000
	i.SetString("1", 10)
	i.Lsh(i, 1000)

	fmt.Println(misc.DigitSum(i))
}
開發者ID:galerina,項目名稱:mycodes,代碼行數:9,代碼來源:16.go

示例13: TestIRootLargeP

// TestIRootLargeP tests IRoot() with p >= n.BitLen().
func TestIRootLargeP(t *testing.T) {
	var p uint = 100
	var n big.Int
	n.Lsh(big.NewInt(1), p-1)
	r := IRoot(&n, p)
	if r.Cmp(big.NewInt(1)) != 0 {
		t.Errorf("For n=%s and p=%d, expected r=1, got r=%s",
			&n, p, r)
	}
}
開發者ID:akalin,項目名稱:iroot,代碼行數:11,代碼來源:iroot_test.go

示例14: p224AlternativeToBig

func p224AlternativeToBig(in *p224FieldElement) *big.Int {
	ret := new(big.Int)
	tmp := new(big.Int)

	for i := uint(0); i < 8; i++ {
		tmp.SetInt64(int64(in[i]))
		tmp.Lsh(tmp, 28*i)
		ret.Add(ret, tmp)
	}
	ret.Mod(ret, p224.P)
	return ret
}
開發者ID:RajibTheKing,項目名稱:gcc,代碼行數:12,代碼來源:p224_test.go

示例15: StakePoolTicketFee

// StakePoolTicketFee determines the stake pool ticket fee for a given ticket
// from the passed percentage. Pool fee as a percentage is truncated from 0.01%
// to 100.00%. This all must be done with integers, so bear with the big.Int
// usage below.
//
// See the included doc.go of this package for more information about the
// calculation of this fee.
func StakePoolTicketFee(stakeDiff dcrutil.Amount, relayFee dcrutil.Amount,
	height int32, poolFee float64, params *chaincfg.Params) dcrutil.Amount {
	// Shift the decimal two places, e.g. 1.00%
	// to 100. This assumes that the proportion
	// is already multiplied by 100 to give a
	// percentage, thus making the entirety
	// be a multiplication by 10000.
	poolFeeAbs := math.Floor(poolFee * 100.0)
	poolFeeInt := int64(poolFeeAbs)

	// Subsidy is fetched from the blockchain package, then
	// pushed forward a number of adjustment periods for
	// compensation in gradual subsidy decay. Recall that
	// the average time to claiming 50% of the tickets as
	// votes is the approximately the same as the ticket
	// pool size (params.TicketPoolSize), so take the
	// ceiling of the ticket pool size divided by the
	// reduction interval.
	adjs := int(math.Ceil(float64(params.TicketPoolSize) /
		float64(params.ReductionInterval)))
	initSubsidyCacheOnce.Do(func() {
		subsidyCache = blockchain.NewSubsidyCache(int64(height), params)
	})
	subsidy := blockchain.CalcStakeVoteSubsidy(subsidyCache, int64(height),
		params)
	for i := 0; i < adjs; i++ {
		subsidy *= 100
		subsidy /= 101
	}

	// The numerator is (p*10000*s*(v+z)) << 64.
	shift := uint(64)
	s := new(big.Int).SetInt64(subsidy)
	v := new(big.Int).SetInt64(int64(stakeDiff))
	z := new(big.Int).SetInt64(int64(relayFee))
	num := new(big.Int).SetInt64(poolFeeInt)
	num.Mul(num, s)
	vPlusZ := new(big.Int).Add(v, z)
	num.Mul(num, vPlusZ)
	num.Lsh(num, shift)

	// The denominator is 10000*(s+v).
	// The extra 10000 above cancels out.
	den := new(big.Int).Set(s)
	den.Add(den, v)
	den.Mul(den, new(big.Int).SetInt64(10000))

	// Divide and shift back.
	num.Div(num, den)
	num.Rsh(num, shift)

	return dcrutil.Amount(num.Int64())
}
開發者ID:decred,項目名稱:dcrwallet,代碼行數:60,代碼來源:poolfees.go


注:本文中的math/big.Int.Lsh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。