本文整理匯總了Golang中math/big.Int.Binomial方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.Binomial方法的具體用法?Golang Int.Binomial怎麽用?Golang Int.Binomial使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math/big.Int
的用法示例。
在下文中一共展示了Int.Binomial方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: calculateBitStatistics
// calculateBitStatistics performs about the simplest DieHard randomness test --
// checks the bit count statistics of random numbers to make sure they match
// a binomial distribution.
// Returns the sum-squared-difference metric of the observed distribution and the
// binomial distribution, normalized to the number of trials.
func calculateBitStatistics(mt *MersenneTwister, trials int) float64 {
var bitsSet [33]int64
for i := 0; i < trials; i++ {
bitsSet[countBits(mt.Uint32())]++
}
// bitsSet should follow a binomial distribution pretty closely
var ssd int64
sum := 4294967296 // Sum of the binomial distribution from 0-32.
for i := 0; i < 33; i++ {
z := big.Int{}
binomial := int64(z.Binomial(32, int64(i)).Uint64()) * int64(trials) / int64(sum)
ssd += (bitsSet[i] - binomial) * (bitsSet[i] - binomial)
}
return math.Sqrt(float64(ssd)) / float64(trials)
}
示例2: main
func main() {
N := 20
// drawing it out, I found that it
// comes down to pascal's triangle,
// which simplifies to N choose R:
// N! / (R! * (N - R)!)
// where R = N / 2
// so:
// N! / ((N/2)! * (N/2)!)
// So the solution is easy:
a := new(big.Int)
fmt.Println(a.Binomial((int64)(N*2), (int64)(N)))
}
示例3: TestComb
func TestComb(test *testing.T) {
nums := []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
expTotal := new(big.Int)
expTotal.Binomial(int64(len(nums)), 5)
actTotal := new(big.Int)
c := Comb(nums, 5)
loop := true
vals := make([]int32, 5)
for loop {
loop = c(vals)
actTotal.Add(actTotal, big.NewInt(1))
}
if expTotal.Cmp(actTotal) != 0 {
test.Fatalf("Expected %v combinations, but saw %v\n", expTotal, actTotal)
}
}
示例4: mainExec
func mainExec() int {
start := time.Now()
r := new(big.Int)
fmt.Println(r.Binomial(1000, 10))
numCPUs := runtime.NumCPU()
runtime.GOMAXPROCS(numCPUs)
urls := make(chan int)
done := make(chan struct{})
c := make(chan result)
var wg sync.WaitGroup
const numWorkers = 100
wg.Add(numWorkers)
for i := 0; i < numWorkers; i++ {
go func() {
worker(done, urls, c)
wg.Done()
}()
}
go func() {
wg.Wait()
close(urls)
close(c)
}()
urls <- -1
count := 0
for a := range c {
LOG.Debug("==== %d %s", a.url, a.content)
count++
if count > len(HCIDS) {
close(done)
break
}
}
elapsed := time.Since(start)
LOG.Debug("It took %s", elapsed)
return count - 1
}
示例5: TestMap
func TestMap(t *testing.T) {
start := time.Now()
r := new(big.Int)
fmt.Println(r.Binomial(1000, 10))
numCPUs := runtime.NumCPU()
runtime.GOMAXPROCS(numCPUs) // 모든 CPU를 사용하도록 설정
urls := make(chan string) // 작업을 요청할 채널
done := make(chan struct{}) // 작업 고루틴에 정지 신호를 보낼 채널
c := make(chan result) // 결괏값을 저장할 채널
var wg sync.WaitGroup
const numWorkers = 10
wg.Add(numWorkers)
for i := 0; i < numWorkers; i++ { // 작업을 처리할 고루틴을 10개 생성
go func() {
worker(done, urls, c)
// wg.Done()
}()
}
// go func() {
// wg.Wait() // 고루틴이 끝날 때까지 대기
// close(c) // 대기가 끝나면 결괏값 채널을 닫음
// }()
urls <- "https://github.com/pyrasis/following" // 최초 URL을 보냄
count := 0
for r := range c { // 결과 채널에 값이 들어올 때까지 대기한 뒤 값을 가져옴
fmt.Println(r.name)
count++
if count > 100 { // 100명만 출력한 뒤
close(done) // done을 닫아서 worker 고루틴을 종료
break
}
}
elapsed := time.Since(start)
log.Printf("It took %s", elapsed)
}
示例6: mainExec
func mainExec() map[string]string {
start := time.Now()
r := new(big.Int)
fmt.Println(r.Binomial(1000, 10))
numCPUs := runtime.NumCPU()
runtime.GOMAXPROCS(numCPUs)
p := NewPipeline()
p.Run()
following := &GraphiteFetch{
fetchedUrl: &FetchedUrl{m: make(map[int]error)},
p: p,
result: make(chan FetchedResult),
url: -1,
}
p.request <- following
result := make(map[string]string)
count := 0
LOG.Debug("=len(HCIDS)=== %d", len(HCIDS))
for a := range following.result {
LOG.Debug("==== %d %s", a.url, a.content)
count++
countStr := strconv.Itoa(count)
result[countStr] = a.content
if count > len(HCIDS) {
close(p.done)
break
}
}
elapsed := time.Since(start)
LOG.Debug("It took %s", elapsed)
return result
}
示例7: main
func main() {
var b, c big.Int
for n := int64(0); n < 15; n++ {
fmt.Println(c.Div(b.Binomial(n*2, n), c.SetInt64(n+1)))
}
}
示例8: main
func main() {
var bincoeff = new(big.Int)
bincoeff.Binomial(40, 20)
fmt.Printf("%v\n", bincoeff)
}
示例9: prob15
func prob15() {
x := new(big.Int)
x.Binomial(40, 20)
fmt.Println(x)
}
示例10: PHole
// PHole returns the probability of having a given class of hole cards given
// that scards have already been seen.
//
// Here are two example calculations:
// Me Opp Board P(AA)
// Pre-deal ?? ?? ??? (4 choose 2) / (52 choose 2) ~= 0.0045
// Pre-flop AKs ?? ??? (3 choose 2) / (50 choose 2) ~= 0.0024
func PHole(hd *HandDist, scards []string) float64 {
holes := hd.Ints()
// Count how many hands to eliminate from the holes class because a card in
// that hand has already been seen.
elim := 0
for _, hand := range holes {
for _, card := range hand {
for _, seen := range cards.StoI(scards) {
if card == seen {
elim++
goto nextHand
}
}
}
nextHand:
}
allHands := new(big.Int)
allHands.Binomial(int64(52-len(scards)), 2)
return float64(len(holes)-elim) / float64(allHands.Int64())
}
/*
// FIXME
// CondProbs returns the PTable for P(hole | action) given the cards that have
// currently been seen, and the probabilties P(action) and P(action | hole).
// The formula for calculating the conditional probability P(hole | action):
//
// P(hole) * P(action | hole)
// P(hole | action) = --------------------------
// P(action)
//
// Weisstein, Eric W. "Conditional Probability." From MathWorld--A Wolfram Web
// Resource. http://mathworld.wolfram.com/ConditionalProbability.html
//
func CondProbs(scards []string, pActHole *PTable, pAction []float64) *PTable {
for _, vals := range actionDist {
NewRRSDist(actionDist[:3]...) (* (PHole cards [r1 r2 s]) prob)])]
(apply array-map (flatten values))))
*/
type Lottery struct {
// Maybe should use ints or fixed point to make more accurate.
probs []float64
prizes []string
}
func (this *Lottery) String() string {
b := bytes.NewBufferString("[ ")
for i := 0; i < len(this.probs); i++ {
fmt.Fprintf(b, "%s:%.2f ", this.prizes[i], this.probs[i])
}
b.WriteString("]")
return b.String()
}
// Convert a discrete distribution (array-map {item prob}) into a lottery. The
// probabilities should add up to 1
func NewLottery(dist map[string]float64) *Lottery {
sum := 0.0
lotto := &Lottery{}
for key, val := range dist {
if val != 0 {
sum += val
lotto.probs = append(lotto.probs, sum)
lotto.prizes = append(lotto.prizes, key)
}
}
return lotto
}
// Draw a winner from a Lottery. If at least one value in the lottery is not >=
// 1, then the greatest value is effectively rounded up to 1.0"
func (this *Lottery) Play() string {
draw := rand.Float64()
for i, p := range this.probs {
if p > draw {
return this.prizes[i]
}
}
return this.prizes[len(this.prizes)-1]
}
示例11: main
func main() {
var x, y int64 = 20, 20
n := x + y
paths := new(big.Int) // create a new big.Int value using package math/big
fmt.Printf("There are %d paths", paths.Binomial(n, x)) // Binomial() method sets value to the binomial coefficient of (n,k)
}
示例12: main
func main() {
result := new(big.Int)
fmt.Println(result.Binomial(2*20, 20))
}