当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R dplyr mutate_all 改变多列


[Superseded]

作用域动词( _if_at_all )已被现有动词中的 pick()across() 取代。有关详细信息,请参阅vignette("colwise")

mutate()transmute()scoped 变体可以轻松地将相同的转换应用于多个变量。有以下三种变体:

  • _all 影响每个变量

  • _at 影响使用字符向量或 vars() 选择的变量

  • _if 影响使用谓词函数选择的变量:

用法

mutate_all(.tbl, .funs, ...)

mutate_if(.tbl, .predicate, .funs, ...)

mutate_at(.tbl, .vars, .funs, ..., .cols = NULL)

transmute_all(.tbl, .funs, ...)

transmute_if(.tbl, .predicate, .funs, ...)

transmute_at(.tbl, .vars, .funs, ..., .cols = NULL)

参数

.tbl

tbl 对象。

.funs

函数 fun 、 quosure 样式 lambda ~ fun(.) 或任一形式的列表。

...

.funs 中函数调用的附加参数。这些仅在 tidy dots 支持下评估一次。

.predicate

应用于列或逻辑向量的谓词函数。选择.predicate 为或返回TRUE 的变量。该参数传递给rlang::as_function(),因此支持quosure-style lambda 函数和表示函数名称的字符串。

.vars

vars() 生成的列列表、列名称的字符向量、列位置的数值向量或 NULL

.cols

此参数已重命名为 .vars 以符合 dplyr 的术语,并且已弃用。

一个 DataFrame 。默认情况下,新创建的列具有唯一标识输出所需的最短名称。要强制包含名称(即使不需要),请为输入命名(有关详细信息,请参阅示例)。

对变量进行分组

如果应用于分组的 tibble,则这些操作不会应用于分组变量。该行为取决于选择是隐式的(allif 选择)还是显式的(at 选择)。

  • mutate_at()transmute_at() 中的显式选择所覆盖的变量进行分组始终是一个错误。将 -group_cols() 添加到 vars() 选择中以避免出现这种情况:

    data %>% mutate_at(vars(-group_cols(), ...), myoperation)

    或者从列名的字符向量中删除group_vars()

    nms <- setdiff(nms, group_vars(data))
    data %>% mutate_at(vars, myoperation)
  • mutate_all()transmute_all()mutate_if()transmute_if() 忽略隐式选择覆盖的分组变量。

命名

新列的名称源自输入变量的名称和函数的名称。

  • 如果只有一个未命名函数(即,如果 .funs 是长度为 1 的未命名列表),则使用输入变量的名称来命名新列;

  • 对于 _at 函数,如果只有一个未命名变量(即,如果 .vars 的形式为 vars(a_single_column) )并且 .funs 的长度大于 1,则使用函数的名称来命名新列;

  • 否则,通过连接输入变量的名称和函数的名称来创建新名称,并用下划线 "_" 分隔。

.funs 参数可以是命名或未命名列表。如果函数未命名并且无法自动派生名称,则使用 "fn#" 形式的名称。同样,vars() 接受命名和未命名参数。如果 .vars 中的变量被命名,则会创建一个具有该名称的新列。

新列中的名称冲突使用唯一的后缀消除歧义。

也可以看看

例子

iris <- as_tibble(iris)

# All variants can be passed functions and additional arguments,
# purrr-style. The _at() variants directly support strings. Here
# we'll scale the variables `height` and `mass`:
scale2 <- function(x, na.rm = FALSE) (x - mean(x, na.rm = na.rm)) / sd(x, na.rm)
starwars %>% mutate_at(c("height", "mass"), scale2)
#> # A tibble: 87 × 14
#>    name      height  mass hair_color skin_color eye_color birth_year sex  
#>    <chr>      <dbl> <dbl> <chr>      <chr>      <chr>          <dbl> <chr>
#>  1 Luke Sky…     NA    NA blond      fair       blue            19   male 
#>  2 C-3PO         NA    NA NA         gold       yellow         112   none 
#>  3 R2-D2         NA    NA NA         white, bl… red             33   none 
#>  4 Darth Va…     NA    NA none       white      yellow          41.9 male 
#>  5 Leia Org…     NA    NA brown      light      brown           19   fema…
#>  6 Owen Lars     NA    NA brown, gr… light      blue            52   male 
#>  7 Beru Whi…     NA    NA brown      light      blue            47   fema…
#>  8 R5-D4         NA    NA NA         white, red red             NA   none 
#>  9 Biggs Da…     NA    NA black      light      brown           24   male 
#> 10 Obi-Wan …     NA    NA auburn, w… fair       blue-gray       57   male 
#> # ℹ 77 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>
# ->
starwars %>% mutate(across(c("height", "mass"), scale2))
#> # A tibble: 87 × 14
#>    name      height  mass hair_color skin_color eye_color birth_year sex  
#>    <chr>      <dbl> <dbl> <chr>      <chr>      <chr>          <dbl> <chr>
#>  1 Luke Sky…     NA    NA blond      fair       blue            19   male 
#>  2 C-3PO         NA    NA NA         gold       yellow         112   none 
#>  3 R2-D2         NA    NA NA         white, bl… red             33   none 
#>  4 Darth Va…     NA    NA none       white      yellow          41.9 male 
#>  5 Leia Org…     NA    NA brown      light      brown           19   fema…
#>  6 Owen Lars     NA    NA brown, gr… light      blue            52   male 
#>  7 Beru Whi…     NA    NA brown      light      blue            47   fema…
#>  8 R5-D4         NA    NA NA         white, red red             NA   none 
#>  9 Biggs Da…     NA    NA black      light      brown           24   male 
#> 10 Obi-Wan …     NA    NA auburn, w… fair       blue-gray       57   male 
#> # ℹ 77 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>

# You can pass additional arguments to the function:
starwars %>% mutate_at(c("height", "mass"), scale2, na.rm = TRUE)
#> # A tibble: 87 × 14
#>    name    height    mass hair_color skin_color eye_color birth_year sex  
#>    <chr>    <dbl>   <dbl> <chr>      <chr>      <chr>          <dbl> <chr>
#>  1 Luke … -0.0678 -0.120  blond      fair       blue            19   male 
#>  2 C-3PO  -0.212  -0.132  NA         gold       yellow         112   none 
#>  3 R2-D2  -2.25   -0.385  NA         white, bl… red             33   none 
#>  4 Darth…  0.795   0.228  none       white      yellow          41.9 male 
#>  5 Leia … -0.701  -0.285  brown      light      brown           19   fema…
#>  6 Owen …  0.105   0.134  brown, gr… light      blue            52   male 
#>  7 Beru … -0.269  -0.132  brown      light      blue            47   fema…
#>  8 R5-D4  -2.22   -0.385  NA         white, red red             NA   none 
#>  9 Biggs…  0.249  -0.0786 black      light      brown           24   male 
#> 10 Obi-W…  0.220  -0.120  auburn, w… fair       blue-gray       57   male 
#> # ℹ 77 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>
starwars %>% mutate_at(c("height", "mass"), ~scale2(., na.rm = TRUE))
#> # A tibble: 87 × 14
#>    name    height    mass hair_color skin_color eye_color birth_year sex  
#>    <chr>    <dbl>   <dbl> <chr>      <chr>      <chr>          <dbl> <chr>
#>  1 Luke … -0.0678 -0.120  blond      fair       blue            19   male 
#>  2 C-3PO  -0.212  -0.132  NA         gold       yellow         112   none 
#>  3 R2-D2  -2.25   -0.385  NA         white, bl… red             33   none 
#>  4 Darth…  0.795   0.228  none       white      yellow          41.9 male 
#>  5 Leia … -0.701  -0.285  brown      light      brown           19   fema…
#>  6 Owen …  0.105   0.134  brown, gr… light      blue            52   male 
#>  7 Beru … -0.269  -0.132  brown      light      blue            47   fema…
#>  8 R5-D4  -2.22   -0.385  NA         white, red red             NA   none 
#>  9 Biggs…  0.249  -0.0786 black      light      brown           24   male 
#> 10 Obi-W…  0.220  -0.120  auburn, w… fair       blue-gray       57   male 
#> # ℹ 77 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>
# ->
starwars %>% mutate(across(c("height", "mass"), ~ scale2(.x, na.rm = TRUE)))
#> # A tibble: 87 × 14
#>    name    height    mass hair_color skin_color eye_color birth_year sex  
#>    <chr>    <dbl>   <dbl> <chr>      <chr>      <chr>          <dbl> <chr>
#>  1 Luke … -0.0678 -0.120  blond      fair       blue            19   male 
#>  2 C-3PO  -0.212  -0.132  NA         gold       yellow         112   none 
#>  3 R2-D2  -2.25   -0.385  NA         white, bl… red             33   none 
#>  4 Darth…  0.795   0.228  none       white      yellow          41.9 male 
#>  5 Leia … -0.701  -0.285  brown      light      brown           19   fema…
#>  6 Owen …  0.105   0.134  brown, gr… light      blue            52   male 
#>  7 Beru … -0.269  -0.132  brown      light      blue            47   fema…
#>  8 R5-D4  -2.22   -0.385  NA         white, red red             NA   none 
#>  9 Biggs…  0.249  -0.0786 black      light      brown           24   male 
#> 10 Obi-W…  0.220  -0.120  auburn, w… fair       blue-gray       57   male 
#> # ℹ 77 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>

# You can also supply selection helpers to _at() functions but you have
# to quote them with vars():
iris %>% mutate_at(vars(matches("Sepal")), log)
#> # A tibble: 150 × 5
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#>  1         1.63        1.25          1.4         0.2 setosa 
#>  2         1.59        1.10          1.4         0.2 setosa 
#>  3         1.55        1.16          1.3         0.2 setosa 
#>  4         1.53        1.13          1.5         0.2 setosa 
#>  5         1.61        1.28          1.4         0.2 setosa 
#>  6         1.69        1.36          1.7         0.4 setosa 
#>  7         1.53        1.22          1.4         0.3 setosa 
#>  8         1.61        1.22          1.5         0.2 setosa 
#>  9         1.48        1.06          1.4         0.2 setosa 
#> 10         1.59        1.13          1.5         0.1 setosa 
#> # ℹ 140 more rows
iris %>% mutate(across(matches("Sepal"), log))
#> # A tibble: 150 × 5
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#>  1         1.63        1.25          1.4         0.2 setosa 
#>  2         1.59        1.10          1.4         0.2 setosa 
#>  3         1.55        1.16          1.3         0.2 setosa 
#>  4         1.53        1.13          1.5         0.2 setosa 
#>  5         1.61        1.28          1.4         0.2 setosa 
#>  6         1.69        1.36          1.7         0.4 setosa 
#>  7         1.53        1.22          1.4         0.3 setosa 
#>  8         1.61        1.22          1.5         0.2 setosa 
#>  9         1.48        1.06          1.4         0.2 setosa 
#> 10         1.59        1.13          1.5         0.1 setosa 
#> # ℹ 140 more rows

# The _if() variants apply a predicate function (a function that
# returns TRUE or FALSE) to determine the relevant subset of
# columns. Here we divide all the numeric columns by 100:
starwars %>% mutate_if(is.numeric, scale2, na.rm = TRUE)
#> # A tibble: 87 × 14
#>    name    height    mass hair_color skin_color eye_color birth_year sex  
#>    <chr>    <dbl>   <dbl> <chr>      <chr>      <chr>          <dbl> <chr>
#>  1 Luke … -0.0678 -0.120  blond      fair       blue          -0.443 male 
#>  2 C-3PO  -0.212  -0.132  NA         gold       yellow         0.158 none 
#>  3 R2-D2  -2.25   -0.385  NA         white, bl… red           -0.353 none 
#>  4 Darth…  0.795   0.228  none       white      yellow        -0.295 male 
#>  5 Leia … -0.701  -0.285  brown      light      brown         -0.443 fema…
#>  6 Owen …  0.105   0.134  brown, gr… light      blue          -0.230 male 
#>  7 Beru … -0.269  -0.132  brown      light      blue          -0.262 fema…
#>  8 R5-D4  -2.22   -0.385  NA         white, red red           NA     none 
#>  9 Biggs…  0.249  -0.0786 black      light      brown         -0.411 male 
#> 10 Obi-W…  0.220  -0.120  auburn, w… fair       blue-gray     -0.198 male 
#> # ℹ 77 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>
starwars %>% mutate(across(where(is.numeric), ~ scale2(.x, na.rm = TRUE)))
#> # A tibble: 87 × 14
#>    name    height    mass hair_color skin_color eye_color birth_year sex  
#>    <chr>    <dbl>   <dbl> <chr>      <chr>      <chr>          <dbl> <chr>
#>  1 Luke … -0.0678 -0.120  blond      fair       blue          -0.443 male 
#>  2 C-3PO  -0.212  -0.132  NA         gold       yellow         0.158 none 
#>  3 R2-D2  -2.25   -0.385  NA         white, bl… red           -0.353 none 
#>  4 Darth…  0.795   0.228  none       white      yellow        -0.295 male 
#>  5 Leia … -0.701  -0.285  brown      light      brown         -0.443 fema…
#>  6 Owen …  0.105   0.134  brown, gr… light      blue          -0.230 male 
#>  7 Beru … -0.269  -0.132  brown      light      blue          -0.262 fema…
#>  8 R5-D4  -2.22   -0.385  NA         white, red red           NA     none 
#>  9 Biggs…  0.249  -0.0786 black      light      brown         -0.411 male 
#> 10 Obi-W…  0.220  -0.120  auburn, w… fair       blue-gray     -0.198 male 
#> # ℹ 77 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>

# mutate_if() is particularly useful for transforming variables from
# one type to another
iris %>% mutate_if(is.factor, as.character)
#> # A tibble: 150 × 5
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <chr>  
#>  1          5.1         3.5          1.4         0.2 setosa 
#>  2          4.9         3            1.4         0.2 setosa 
#>  3          4.7         3.2          1.3         0.2 setosa 
#>  4          4.6         3.1          1.5         0.2 setosa 
#>  5          5           3.6          1.4         0.2 setosa 
#>  6          5.4         3.9          1.7         0.4 setosa 
#>  7          4.6         3.4          1.4         0.3 setosa 
#>  8          5           3.4          1.5         0.2 setosa 
#>  9          4.4         2.9          1.4         0.2 setosa 
#> 10          4.9         3.1          1.5         0.1 setosa 
#> # ℹ 140 more rows
iris %>% mutate_if(is.double, as.integer)
#> # A tibble: 150 × 5
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <int>       <int>        <int>       <int> <fct>  
#>  1            5           3            1           0 setosa 
#>  2            4           3            1           0 setosa 
#>  3            4           3            1           0 setosa 
#>  4            4           3            1           0 setosa 
#>  5            5           3            1           0 setosa 
#>  6            5           3            1           0 setosa 
#>  7            4           3            1           0 setosa 
#>  8            5           3            1           0 setosa 
#>  9            4           2            1           0 setosa 
#> 10            4           3            1           0 setosa 
#> # ℹ 140 more rows
# ->
iris %>% mutate(across(where(is.factor), as.character))
#> # A tibble: 150 × 5
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <chr>  
#>  1          5.1         3.5          1.4         0.2 setosa 
#>  2          4.9         3            1.4         0.2 setosa 
#>  3          4.7         3.2          1.3         0.2 setosa 
#>  4          4.6         3.1          1.5         0.2 setosa 
#>  5          5           3.6          1.4         0.2 setosa 
#>  6          5.4         3.9          1.7         0.4 setosa 
#>  7          4.6         3.4          1.4         0.3 setosa 
#>  8          5           3.4          1.5         0.2 setosa 
#>  9          4.4         2.9          1.4         0.2 setosa 
#> 10          4.9         3.1          1.5         0.1 setosa 
#> # ℹ 140 more rows
iris %>% mutate(across(where(is.double), as.integer))
#> # A tibble: 150 × 5
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <int>       <int>        <int>       <int> <fct>  
#>  1            5           3            1           0 setosa 
#>  2            4           3            1           0 setosa 
#>  3            4           3            1           0 setosa 
#>  4            4           3            1           0 setosa 
#>  5            5           3            1           0 setosa 
#>  6            5           3            1           0 setosa 
#>  7            4           3            1           0 setosa 
#>  8            5           3            1           0 setosa 
#>  9            4           2            1           0 setosa 
#> 10            4           3            1           0 setosa 
#> # ℹ 140 more rows

# Multiple transformations ----------------------------------------

# If you want to apply multiple transformations, pass a list of
# functions. When there are multiple functions, they create new
# variables instead of modifying the variables in place:
iris %>% mutate_if(is.numeric, list(scale2, log))
#> # A tibble: 150 × 13
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#>  1          5.1         3.5          1.4         0.2 setosa 
#>  2          4.9         3            1.4         0.2 setosa 
#>  3          4.7         3.2          1.3         0.2 setosa 
#>  4          4.6         3.1          1.5         0.2 setosa 
#>  5          5           3.6          1.4         0.2 setosa 
#>  6          5.4         3.9          1.7         0.4 setosa 
#>  7          4.6         3.4          1.4         0.3 setosa 
#>  8          5           3.4          1.5         0.2 setosa 
#>  9          4.4         2.9          1.4         0.2 setosa 
#> 10          4.9         3.1          1.5         0.1 setosa 
#> # ℹ 140 more rows
#> # ℹ 8 more variables: Sepal.Length_fn1 <dbl>, Sepal.Width_fn1 <dbl>,
#> #   Petal.Length_fn1 <dbl>, Petal.Width_fn1 <dbl>,
#> #   Sepal.Length_fn2 <dbl>, Sepal.Width_fn2 <dbl>,
#> #   Petal.Length_fn2 <dbl>, Petal.Width_fn2 <dbl>
iris %>% mutate_if(is.numeric, list(~scale2(.), ~log(.)))
#> # A tibble: 150 × 13
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#>  1          5.1         3.5          1.4         0.2 setosa 
#>  2          4.9         3            1.4         0.2 setosa 
#>  3          4.7         3.2          1.3         0.2 setosa 
#>  4          4.6         3.1          1.5         0.2 setosa 
#>  5          5           3.6          1.4         0.2 setosa 
#>  6          5.4         3.9          1.7         0.4 setosa 
#>  7          4.6         3.4          1.4         0.3 setosa 
#>  8          5           3.4          1.5         0.2 setosa 
#>  9          4.4         2.9          1.4         0.2 setosa 
#> 10          4.9         3.1          1.5         0.1 setosa 
#> # ℹ 140 more rows
#> # ℹ 8 more variables: Sepal.Length_scale2 <dbl>,
#> #   Sepal.Width_scale2 <dbl>, Petal.Length_scale2 <dbl>,
#> #   Petal.Width_scale2 <dbl>, Sepal.Length_log <dbl>,
#> #   Sepal.Width_log <dbl>, Petal.Length_log <dbl>, Petal.Width_log <dbl>
iris %>% mutate_if(is.numeric, list(scale = scale2, log = log))
#> # A tibble: 150 × 13
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#>  1          5.1         3.5          1.4         0.2 setosa 
#>  2          4.9         3            1.4         0.2 setosa 
#>  3          4.7         3.2          1.3         0.2 setosa 
#>  4          4.6         3.1          1.5         0.2 setosa 
#>  5          5           3.6          1.4         0.2 setosa 
#>  6          5.4         3.9          1.7         0.4 setosa 
#>  7          4.6         3.4          1.4         0.3 setosa 
#>  8          5           3.4          1.5         0.2 setosa 
#>  9          4.4         2.9          1.4         0.2 setosa 
#> 10          4.9         3.1          1.5         0.1 setosa 
#> # ℹ 140 more rows
#> # ℹ 8 more variables: Sepal.Length_scale <dbl>, Sepal.Width_scale <dbl>,
#> #   Petal.Length_scale <dbl>, Petal.Width_scale <dbl>,
#> #   Sepal.Length_log <dbl>, Sepal.Width_log <dbl>,
#> #   Petal.Length_log <dbl>, Petal.Width_log <dbl>
# ->
iris %>%
  as_tibble() %>%
  mutate(across(where(is.numeric), list(scale = scale2, log = log)))
#> # A tibble: 150 × 13
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#>  1          5.1         3.5          1.4         0.2 setosa 
#>  2          4.9         3            1.4         0.2 setosa 
#>  3          4.7         3.2          1.3         0.2 setosa 
#>  4          4.6         3.1          1.5         0.2 setosa 
#>  5          5           3.6          1.4         0.2 setosa 
#>  6          5.4         3.9          1.7         0.4 setosa 
#>  7          4.6         3.4          1.4         0.3 setosa 
#>  8          5           3.4          1.5         0.2 setosa 
#>  9          4.4         2.9          1.4         0.2 setosa 
#> 10          4.9         3.1          1.5         0.1 setosa 
#> # ℹ 140 more rows
#> # ℹ 8 more variables: Sepal.Length_scale <dbl>, Sepal.Length_log <dbl>,
#> #   Sepal.Width_scale <dbl>, Sepal.Width_log <dbl>,
#> #   Petal.Length_scale <dbl>, Petal.Length_log <dbl>,
#> #   Petal.Width_scale <dbl>, Petal.Width_log <dbl>

# When there's only one function in the list, it modifies existing
# variables in place. Give it a name to instead create new variables:
iris %>% mutate_if(is.numeric, list(scale2))
#> # A tibble: 150 × 5
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#>  1       -0.898      1.02          -1.34       -1.31 setosa 
#>  2       -1.14      -0.132         -1.34       -1.31 setosa 
#>  3       -1.38       0.327         -1.39       -1.31 setosa 
#>  4       -1.50       0.0979        -1.28       -1.31 setosa 
#>  5       -1.02       1.25          -1.34       -1.31 setosa 
#>  6       -0.535      1.93          -1.17       -1.05 setosa 
#>  7       -1.50       0.786         -1.34       -1.18 setosa 
#>  8       -1.02       0.786         -1.28       -1.31 setosa 
#>  9       -1.74      -0.361         -1.34       -1.31 setosa 
#> 10       -1.14       0.0979        -1.28       -1.44 setosa 
#> # ℹ 140 more rows
iris %>% mutate_if(is.numeric, list(scale = scale2))
#> # A tibble: 150 × 9
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#>  1          5.1         3.5          1.4         0.2 setosa 
#>  2          4.9         3            1.4         0.2 setosa 
#>  3          4.7         3.2          1.3         0.2 setosa 
#>  4          4.6         3.1          1.5         0.2 setosa 
#>  5          5           3.6          1.4         0.2 setosa 
#>  6          5.4         3.9          1.7         0.4 setosa 
#>  7          4.6         3.4          1.4         0.3 setosa 
#>  8          5           3.4          1.5         0.2 setosa 
#>  9          4.4         2.9          1.4         0.2 setosa 
#> 10          4.9         3.1          1.5         0.1 setosa 
#> # ℹ 140 more rows
#> # ℹ 4 more variables: Sepal.Length_scale <dbl>, Sepal.Width_scale <dbl>,
#> #   Petal.Length_scale <dbl>, Petal.Width_scale <dbl>
源代码:R/colwise-mutate.R

相关用法


注:本文由纯净天空筛选整理自Hadley Wickham等大神的英文原创作品 Mutate multiple columns。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。