删除用作分组变量的所有因子的未使用级别,然后重新计算分组结构。
group_trim()
在用于选择组子集的 filter()
之后特别有用。
参数
- .tbl
- .drop
-
请参阅
group_by()
也可以看看
其他分组函数:group_by()
、group_map()
、group_nest()
、group_split()
例子
iris %>%
group_by(Species) %>%
filter(Species == "setosa", .preserve = TRUE) %>%
group_trim()
#> # A tibble: 50 × 5
#> # Groups: Species [1]
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 40 more rows
相关用法
- R dplyr group_split 按组分割 DataFrame
- R dplyr group_map 对每个组应用一个函数
- R dplyr group_by_all 按选择的变量进行分组
- R dplyr group_by_drop_default group_by 的 .drop 参数的默认值
- R dplyr group_by 按一个或多个变量分组
- R dplyr group_nest 使用分组规范嵌套 tibble
- R dplyr group_data 元数据分组
- R dplyr group_cols 选择分组变量
- R dplyr slice 使用行的位置对行进行子集化
- R dplyr copy_to 将本地数据帧复制到远程src
- R dplyr sample_n 从表中采样 n 行
- R dplyr consecutive_id 为连续组合生成唯一标识符
- R dplyr row_number 整数排名函数
- R dplyr band_members 乐队成员
- R dplyr mutate-joins 变异连接
- R dplyr nth 从向量中提取第一个、最后一个或第 n 个值
- R dplyr coalesce 找到第一个非缺失元素
- R dplyr mutate 创建、修改和删除列
- R dplyr order_by 用于排序窗口函数输出的辅助函数
- R dplyr context 有关“当前”组或变量的信息
- R dplyr percent_rank 比例排名函数
- R dplyr recode 重新编码值
- R dplyr starwars 星球大战人物
- R dplyr desc 降序
- R dplyr between 检测值落在指定范围内的位置
注:本文由纯净天空筛选整理自Hadley Wickham等大神的英文原创作品 Trim grouping structure。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。