当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom glance.gam 浏览一个(n)游戏对象


Glance 接受模型对象并返回 tibble::tibble(),其中仅包含一行模型摘要。摘要通常是拟合优度度量、残差假设检验的 p 值或模型收敛信息。

Glance 永远不会返返回自对建模函数的原始调用的信息。这包括建模函数的名称或传递给建模函数的任何参数。

Glance 不计算汇总度量。相反,它将这些计算外包给适当的方法并将结果收集在一起。有时拟合优度测量是不确定的。在这些情况下,该度量将报告为 NA

无论模型矩阵是否秩亏,Glance 都会返回相同的列数。如果是这样,则不再具有明确定义值的列中的条目将使用适当类型的 NA 进行填充。

用法

# S3 method for gam
glance(x, ...)

参数

x

从调用 mgcv::gam() 返回的 gam 对象。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

也可以看看

glance() , mgcv::gam()

其他 mgcv 整理器:tidy.gam()

恰好只有一行和一列的 tibble::tibble()

AIC

模型的 Akaike 信息准则。

BIC

模型的贝叶斯信息准则。

deviance

模型的偏差。

df

模型使用的自由度。

df.residual

剩余自由度。

logLik

模型的对数似然。 [stats::logLik()] 可能是一个有用的参考。

nobs

使用的观察数。

例子


# load libraries for models and data
library(mgcv)

# fit model
g <- gam(mpg ~ s(hp) + am + qsec, data = mtcars)

# summarize model fit with tidiers
tidy(g)
#> # A tibble: 1 × 5
#>   term    edf ref.df statistic p.value
#>   <chr> <dbl>  <dbl>     <dbl>   <dbl>
#> 1 s(hp)  2.36   3.02      6.34 0.00218
tidy(g, parametric = TRUE)
#> # A tibble: 3 × 5
#>   term        estimate std.error statistic p.value
#>   <chr>          <dbl>     <dbl>     <dbl>   <dbl>
#> 1 (Intercept)  16.7        9.83      1.70  0.101  
#> 2 am            4.37       1.56      2.81  0.00918
#> 3 qsec          0.0904     0.525     0.172 0.865  
glance(g)
#> # A tibble: 1 × 7
#>      df logLik   AIC   BIC deviance df.residual  nobs
#>   <dbl>  <dbl> <dbl> <dbl>    <dbl>       <dbl> <int>
#> 1  5.36  -74.4  162.  171.     196.        26.6    32
augment(g)
#> # A tibble: 32 × 11
#>    .rownames    mpg    am  qsec    hp .fitted .se.fit .resid   .hat .sigma
#>    <chr>      <dbl> <dbl> <dbl> <dbl>   <dbl>   <dbl>  <dbl>  <dbl> <lgl> 
#>  1 Mazda RX4   21       1  16.5   110    24.3   1.03  -3.25  0.145  NA    
#>  2 Mazda RX4…  21       1  17.0   110    24.3   0.925 -3.30  0.116  NA    
#>  3 Datsun 710  22.8     1  18.6    93    26.0   0.894 -3.22  0.109  NA    
#>  4 Hornet 4 …  21.4     0  19.4   110    20.2   0.827  1.25  0.0930 NA    
#>  5 Hornet Sp…  18.7     0  17.0   175    15.7   0.815  3.02  0.0902 NA    
#>  6 Valiant     18.1     0  20.2   105    20.7   0.914 -2.56  0.113  NA    
#>  7 Duster 360  14.3     0  15.8   245    12.7   1.11   1.63  0.167  NA    
#>  8 Merc 240D   24.4     0  20      62    25.0   1.45  -0.618 0.287  NA    
#>  9 Merc 230    22.8     0  22.9    95    21.8   1.81   0.959 0.446  NA    
#> 10 Merc 280    19.2     0  18.3   123    19.0   0.864  0.211 0.102  NA    
#> # ℹ 22 more rows
#> # ℹ 1 more variable: .cooksd <dbl>
源代码:R/mgcv-tidiers.R

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Glance at a(n) gam object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。