为了打印的目的,将相关数据帧转换为无引号矩阵,其中相关性格式清晰(删除前导零;为符号留出空间)并且对角线(或任何 NA)留空。
参数
- x
-
标量、向量、矩阵或 DataFrame 。
- decimals
-
显示数字的小数位数。
- leading_zeros
-
是否应该显示小数前导零(例如 0.1)?如果为 FALSE,它们将被删除。
- na_print
-
表示打印输出中 NA 值的字符串
例子
# Examples with correlate()
library(dplyr)
#>
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
mtcars %>% correlate() %>% fashion()
#> Correlation computed with
#> • Method: 'pearson'
#> • Missing treated using: 'pairwise.complete.obs'
#> term mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 mpg -.85 -.85 -.78 .68 -.87 .42 .66 .60 .48 -.55
#> 2 cyl -.85 .90 .83 -.70 .78 -.59 -.81 -.52 -.49 .53
#> 3 disp -.85 .90 .79 -.71 .89 -.43 -.71 -.59 -.56 .39
#> 4 hp -.78 .83 .79 -.45 .66 -.71 -.72 -.24 -.13 .75
#> 5 drat .68 -.70 -.71 -.45 -.71 .09 .44 .71 .70 -.09
#> 6 wt -.87 .78 .89 .66 -.71 -.17 -.55 -.69 -.58 .43
#> 7 qsec .42 -.59 -.43 -.71 .09 -.17 .74 -.23 -.21 -.66
#> 8 vs .66 -.81 -.71 -.72 .44 -.55 .74 .17 .21 -.57
#> 9 am .60 -.52 -.59 -.24 .71 -.69 -.23 .17 .79 .06
#> 10 gear .48 -.49 -.56 -.13 .70 -.58 -.21 .21 .79 .27
#> 11 carb -.55 .53 .39 .75 -.09 .43 -.66 -.57 .06 .27
mtcars %>% correlate() %>% fashion(decimals = 1)
#> Correlation computed with
#> • Method: 'pearson'
#> • Missing treated using: 'pairwise.complete.obs'
#> term mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 mpg -.9 -.8 -.8 .7 -.9 .4 .7 .6 .5 -.6
#> 2 cyl -.9 .9 .8 -.7 .8 -.6 -.8 -.5 -.5 .5
#> 3 disp -.8 .9 .8 -.7 .9 -.4 -.7 -.6 -.6 .4
#> 4 hp -.8 .8 .8 -.4 .7 -.7 -.7 -.2 -.1 .7
#> 5 drat .7 -.7 -.7 -.4 -.7 .1 .4 .7 .7 -.1
#> 6 wt -.9 .8 .9 .7 -.7 -.2 -.6 -.7 -.6 .4
#> 7 qsec .4 -.6 -.4 -.7 .1 -.2 .7 -.2 -.2 -.7
#> 8 vs .7 -.8 -.7 -.7 .4 -.6 .7 .2 .2 -.6
#> 9 am .6 -.5 -.6 -.2 .7 -.7 -.2 .2 .8 .1
#> 10 gear .5 -.5 -.6 -.1 .7 -.6 -.2 .2 .8 .3
#> 11 carb -.6 .5 .4 .7 -.1 .4 -.7 -.6 .1 .3
mtcars %>% correlate() %>% fashion(leading_zeros = TRUE)
#> Correlation computed with
#> • Method: 'pearson'
#> • Missing treated using: 'pairwise.complete.obs'
#> term mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 mpg -0.85 -0.85 -0.78 0.68 -0.87 0.42 0.66 0.60 0.48 -0.55
#> 2 cyl -0.85 0.90 0.83 -0.70 0.78 -0.59 -0.81 -0.52 -0.49 0.53
#> 3 disp -0.85 0.90 0.79 -0.71 0.89 -0.43 -0.71 -0.59 -0.56 0.39
#> 4 hp -0.78 0.83 0.79 -0.45 0.66 -0.71 -0.72 -0.24 -0.13 0.75
#> 5 drat 0.68 -0.70 -0.71 -0.45 -0.71 0.09 0.44 0.71 0.70 -0.09
#> 6 wt -0.87 0.78 0.89 0.66 -0.71 -0.17 -0.55 -0.69 -0.58 0.43
#> 7 qsec 0.42 -0.59 -0.43 -0.71 0.09 -0.17 0.74 -0.23 -0.21 -0.66
#> 8 vs 0.66 -0.81 -0.71 -0.72 0.44 -0.55 0.74 0.17 0.21 -0.57
#> 9 am 0.60 -0.52 -0.59 -0.24 0.71 -0.69 -0.23 0.17 0.79 0.06
#> 10 gear 0.48 -0.49 -0.56 -0.13 0.70 -0.58 -0.21 0.21 0.79 0.27
#> 11 carb -0.55 0.53 0.39 0.75 -0.09 0.43 -0.66 -0.57 0.06 0.27
mtcars %>% correlate() %>% fashion(na_print = "*")
#> Correlation computed with
#> • Method: 'pearson'
#> • Missing treated using: 'pairwise.complete.obs'
#> term mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 mpg * -.85 -.85 -.78 .68 -.87 .42 .66 .60 .48 -.55
#> 2 cyl -.85 * .90 .83 -.70 .78 -.59 -.81 -.52 -.49 .53
#> 3 disp -.85 .90 * .79 -.71 .89 -.43 -.71 -.59 -.56 .39
#> 4 hp -.78 .83 .79 * -.45 .66 -.71 -.72 -.24 -.13 .75
#> 5 drat .68 -.70 -.71 -.45 * -.71 .09 .44 .71 .70 -.09
#> 6 wt -.87 .78 .89 .66 -.71 * -.17 -.55 -.69 -.58 .43
#> 7 qsec .42 -.59 -.43 -.71 .09 -.17 * .74 -.23 -.21 -.66
#> 8 vs .66 -.81 -.71 -.72 .44 -.55 .74 * .17 .21 -.57
#> 9 am .60 -.52 -.59 -.24 .71 -.69 -.23 .17 * .79 .06
#> 10 gear .48 -.49 -.56 -.13 .70 -.58 -.21 .21 .79 * .27
#> 11 carb -.55 .53 .39 .75 -.09 .43 -.66 -.57 .06 .27 *
# But doesn't have to include correlate()
mtcars %>% fashion(decimals = 3)
#> mpg cyl disp hp drat wt qsec vs am gear
#> 1 21.000 6.000 160.000 110.000 3.900 2.620 16.460 .000 1.000 4.000
#> 2 21.000 6.000 160.000 110.000 3.900 2.875 17.020 .000 1.000 4.000
#> 3 22.800 4.000 108.000 93.000 3.850 2.320 18.610 1.000 1.000 4.000
#> 4 21.400 6.000 258.000 110.000 3.080 3.215 19.440 1.000 .000 3.000
#> 5 18.700 8.000 360.000 175.000 3.150 3.440 17.020 .000 .000 3.000
#> 6 18.100 6.000 225.000 105.000 2.760 3.460 20.220 1.000 .000 3.000
#> 7 14.300 8.000 360.000 245.000 3.210 3.570 15.840 .000 .000 3.000
#> 8 24.400 4.000 146.700 62.000 3.690 3.190 20.000 1.000 .000 4.000
#> 9 22.800 4.000 140.800 95.000 3.920 3.150 22.900 1.000 .000 4.000
#> 10 19.200 6.000 167.600 123.000 3.920 3.440 18.300 1.000 .000 4.000
#> 11 17.800 6.000 167.600 123.000 3.920 3.440 18.900 1.000 .000 4.000
#> 12 16.400 8.000 275.800 180.000 3.070 4.070 17.400 .000 .000 3.000
#> 13 17.300 8.000 275.800 180.000 3.070 3.730 17.600 .000 .000 3.000
#> 14 15.200 8.000 275.800 180.000 3.070 3.780 18.000 .000 .000 3.000
#> 15 10.400 8.000 472.000 205.000 2.930 5.250 17.980 .000 .000 3.000
#> 16 10.400 8.000 460.000 215.000 3.000 5.424 17.820 .000 .000 3.000
#> 17 14.700 8.000 440.000 230.000 3.230 5.345 17.420 .000 .000 3.000
#> 18 32.400 4.000 78.700 66.000 4.080 2.200 19.470 1.000 1.000 4.000
#> 19 30.400 4.000 75.700 52.000 4.930 1.615 18.520 1.000 1.000 4.000
#> 20 33.900 4.000 71.100 65.000 4.220 1.835 19.900 1.000 1.000 4.000
#> 21 21.500 4.000 120.100 97.000 3.700 2.465 20.010 1.000 .000 3.000
#> 22 15.500 8.000 318.000 150.000 2.760 3.520 16.870 .000 .000 3.000
#> 23 15.200 8.000 304.000 150.000 3.150 3.435 17.300 .000 .000 3.000
#> 24 13.300 8.000 350.000 245.000 3.730 3.840 15.410 .000 .000 3.000
#> 25 19.200 8.000 400.000 175.000 3.080 3.845 17.050 .000 .000 3.000
#> 26 27.300 4.000 79.000 66.000 4.080 1.935 18.900 1.000 1.000 4.000
#> 27 26.000 4.000 120.300 91.000 4.430 2.140 16.700 .000 1.000 5.000
#> 28 30.400 4.000 95.100 113.000 3.770 1.513 16.900 1.000 1.000 5.000
#> 29 15.800 8.000 351.000 264.000 4.220 3.170 14.500 .000 1.000 5.000
#> 30 19.700 6.000 145.000 175.000 3.620 2.770 15.500 .000 1.000 5.000
#> 31 15.000 8.000 301.000 335.000 3.540 3.570 14.600 .000 1.000 5.000
#> 32 21.400 4.000 121.000 109.000 4.110 2.780 18.600 1.000 1.000 4.000
#> carb
#> 1 4.000
#> 2 4.000
#> 3 1.000
#> 4 1.000
#> 5 2.000
#> 6 1.000
#> 7 4.000
#> 8 2.000
#> 9 2.000
#> 10 4.000
#> 11 4.000
#> 12 3.000
#> 13 3.000
#> 14 3.000
#> 15 4.000
#> 16 4.000
#> 17 4.000
#> 18 1.000
#> 19 2.000
#> 20 1.000
#> 21 1.000
#> 22 2.000
#> 23 2.000
#> 24 4.000
#> 25 2.000
#> 26 1.000
#> 27 2.000
#> 28 2.000
#> 29 4.000
#> 30 6.000
#> 31 8.000
#> 32 2.000
c(0.234, 134.23, -.23, NA) %>% fashion(na_print = "X")
#> [1] .23 134.23 -.23 X
相关用法
- R corrr focus_if 有条件地聚焦相关 DataFrame
- R corrr first_col 将第一列添加到 data.frame
- R corrr focus 关注相关 DataFrame 架的部分。
- R corrr retract 从拉伸的相关表创建 DataFrame
- R corrr as_cordf 强制列表和矩阵关联数据帧
- R corrr rearrange 重新排列相关 DataFrame
- R corrr correlate 相关 DataFrame
- R corrr pair_n 成对完整案例的数量。
- R corrr dice 返回仅包含选定字段的关联表
- R corrr stretch 将相关数据帧拉伸为长格式。
- R corrr colpair_map 将函数应用于 DataFrame 中的所有列对
- R corrr autoplot.cor_df 从 cor_df 对象创建相关矩阵
- R corrr as_matrix 将相关数据帧转换为矩阵格式
- R corrr rplot 绘制相关 DataFrame 。
- R corrr shave 剃掉上/下三角形。
- R corrr network_plot 相关 DataFrame 的网络图
- R SparkR corr用法及代码示例
- R findGlobals 查找闭包使用的全局函数和变量
- R SparkR count用法及代码示例
- R SparkR column用法及代码示例
- R SparkR columns用法及代码示例
- R checkUsage 检查 R 代码是否存在可能的问题
- R showTree R 表达式的打印 Lisp 风格表示
- R compile 字节码编译器
- R SparkR cov用法及代码示例
注:本文由纯净天空筛选整理自Max Kuhn等大神的英文原创作品 Fashion a correlation data frame for printing.。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。