KhatriRao
位于 Matrix
包(package)。 说明
计算任何类型矩阵的 Khatri-Rao 乘积。
Khatri-Rao 产品是按列的克罗内克产品。它最初由 Khatri 和 Rao (1968) 提出,有许多不同的应用,请参阅 Liu 和 Trenkler (2008) 的调查。值得注意的是,它用于高维张量分解,参见 Bader 和 Kolda (2008)。
用法
KhatriRao(X, Y = X, FUN = "*", sparseY = TRUE, make.dimnames = FALSE)
参数
X , Y |
具有相同列数的矩阵。 |
FUN |
|
sparseY |
逻辑指定是否应强制 |
make.dimnames |
逻辑指示结果是否应该以简单的方式从 |
值
"CsparseMatrix"
,比如 R
, X
( ) 和 Y
( ) 的 Khatri-Rao 乘积的维度为 ,其中 j-th 列,R[,j]
是克罗内克积 kronecker(X[,j], Y[,j])
。
注意
当前的实现对于大型稀疏矩阵是有效的。
例子
## Example with very small matrices:
m <- matrix(1:12,3,4)
d <- diag(1:4)
KhatriRao(m,d)
KhatriRao(d,m)
dimnames(m) <- list(LETTERS[1:3], letters[1:4])
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(NULL, paste0("D", 1:4))
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(paste0("d", 10*1:4), paste0("D", 1:4))
(Kmd <- KhatriRao(m,d, make.dimnames=TRUE))
(Kdm <- KhatriRao(d,m, make.dimnames=TRUE))
nm <- as(m, "nsparseMatrix")
nd <- as(d, "nsparseMatrix")
KhatriRao(nm,nd, make.dimnames=TRUE)
KhatriRao(nd,nm, make.dimnames=TRUE)
stopifnot(dim(KhatriRao(m,d)) == c(nrow(m)*nrow(d), ncol(d)))
## border cases / checks:
zm <- nm; zm[] <- FALSE # all FALSE matrix
stopifnot(all(K1 <- KhatriRao(nd, zm) == 0), identical(dim(K1), c(12L, 4L)),
all(K2 <- KhatriRao(zm, nd) == 0), identical(dim(K2), c(12L, 4L)))
d0 <- d; d0[] <- 0; m0 <- Matrix(d0[-1,])
stopifnot(all(K3 <- KhatriRao(d0, m) == 0), identical(dim(K3), dim(Kdm)),
all(K4 <- KhatriRao(m, d0) == 0), identical(dim(K4), dim(Kmd)),
all(KhatriRao(d0, d0) == 0), all(KhatriRao(m0, d0) == 0),
all(KhatriRao(d0, m0) == 0), all(KhatriRao(m0, m0) == 0),
identical(dimnames(KhatriRao(m, d0, make.dimnames=TRUE)), dimnames(Kmd)))
## a matrix with "structural" and non-structural zeros:
m01 <- new("dgCMatrix", i = c(0L, 2L, 0L, 1L), p = c(0L, 0L, 0L, 2L, 4L),
Dim = 3:4, x = c(1, 0, 1, 0))
D4 <- Diagonal(4, x=1:4) # "as" d
DU <- Diagonal(4)# unit-diagonal: uplo="U"
(K5 <- KhatriRao( d, m01))
K5d <- KhatriRao( d, m01, sparseY=FALSE)
K5Dd <- KhatriRao(D4, m01, sparseY=FALSE)
K5Ud <- KhatriRao(DU, m01, sparseY=FALSE)
(K6 <- KhatriRao(diag(3), t(m01)))
K6D <- KhatriRao(Diagonal(3), t(m01))
K6d <- KhatriRao(diag(3), t(m01), sparseY=FALSE)
K6Dd <- KhatriRao(Diagonal(3), t(m01), sparseY=FALSE)
stopifnot(exprs = {
all(K5 == K5d)
identical(cbind(c(7L, 10L), c(3L, 4L)),
which(K5 != 0, arr.ind = TRUE, useNames=FALSE))
identical(K5d, K5Dd)
identical(K6, K6D)
all(K6 == K6d)
identical(cbind(3:4, 1L),
which(K6 != 0, arr.ind = TRUE, useNames=FALSE))
identical(K6d, K6Dd)
})
作者
Original by Michael Cysouw, Univ. Marburg; minor tweaks, bug fixes etc, by Martin Maechler.
参考
Khatri, C. G., and Rao, C. Radhakrishna (1968) Solutions to Some Functional Equations and Their Applications to Characterization of Probability Distributions. Sankhya: Indian J. Statistics, Series A 30, 167-180.
Bader, Brett W, and Tamara G Kolda (2008) Efficient MATLAB Computations with Sparse and Factored Tensors. SIAM J. Scientific Computing 30, 205-231.
也可以看看
相关用法
- R KNex Koenker-Ng 稀疏模型矩阵和响应向量示例
- R dtrMatrix-class 三角形稠密数值矩阵
- R facmul-methods 乘以矩阵因式分解的因数
- R solve-methods 函数求解矩阵包中的方法
- R updown-methods 更新和降级稀疏 Cholesky 分解
- R bdiag 构建分块对角矩阵
- R printSpMatrix 灵活格式化和打印稀疏矩阵
- R symmetricMatrix-class 包矩阵中对称矩阵的虚拟类
- R all.equal-methods 函数 all.equal() 的矩阵封装方法
- R boolmatmult-methods 布尔算术矩阵乘积:%&% 和方法
- R ltrMatrix-class 三角密集逻辑矩阵
- R Hilbert 生成希尔伯特矩阵
- R nearPD 最近正定矩阵
- R lsyMatrix-class 对称密集逻辑矩阵
- R CHMfactor-class 稀疏 Cholesky 分解
- R symmpart-methods 矩阵的对称部分和偏斜(对称)部分
- R sparseMatrix 从非零项构建一般稀疏矩阵
- R dgCMatrix-class 压缩、稀疏、面向列的数值矩阵
- R Cholesky-methods Cholesky 分解方法
- R Subassign-methods “[<-”的方法 - 分配给“矩阵”的子集
- R ldenseMatrix-class 密集逻辑矩阵的虚拟类“ldenseMatrix”
- R norm-methods 矩阵范数
- R ngeMatrix-class 一般密集非零模式矩阵的“ngeMatrix”类
- R CAex 阿尔伯斯的示例矩阵与“困难”特征分解
- R diagonalMatrix-class 对角矩阵的“diagonalMatrix”类
注:本文由纯净天空筛选整理自R-devel大神的英文原创作品 Khatri-Rao Matrix Product。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。