本文简要介绍
pyspark.pandas.groupby.GroupBy.nunique
的用法。用法:
GroupBy.nunique(dropna: bool = True) → FrameLike
返回DataFrame,其中包含每列每组的不同观察值的数量。
- dropna:布尔值,默认 True
计数中请勿包含NaN。
- nunique:DataFrame 或系列
参数:
返回:
例子:
>>> df = ps.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', ... 'ham', 'ham'], ... 'value1': [1, 5, 5, 2, 5, 5], ... 'value2': list('abbaxy')}, columns=['id', 'value1', 'value2']) >>> df id value1 value2 0 spam 1 a 1 egg 5 b 2 egg 5 b 3 spam 2 a 4 ham 5 x 5 ham 5 y
>>> df.groupby('id').nunique().sort_index() value1 value2 id egg 1 1 ham 1 2 spam 2 1
>>> df.groupby('id')['value1'].nunique().sort_index() id egg 1 ham 1 spam 2 Name: value1, dtype: int64
相关用法
- Python pyspark GroupBy.mean用法及代码示例
- Python pyspark GroupBy.head用法及代码示例
- Python pyspark GroupBy.cumsum用法及代码示例
- Python pyspark GroupBy.rank用法及代码示例
- Python pyspark GroupBy.bfill用法及代码示例
- Python pyspark GroupBy.cummin用法及代码示例
- Python pyspark GroupBy.cummax用法及代码示例
- Python pyspark GroupBy.fillna用法及代码示例
- Python pyspark GroupBy.apply用法及代码示例
- Python pyspark GroupBy.diff用法及代码示例
- Python pyspark GroupBy.filter用法及代码示例
- Python pyspark GroupBy.transform用法及代码示例
- Python pyspark GroupBy.cumcount用法及代码示例
- Python pyspark GroupBy.idxmax用法及代码示例
- Python pyspark GroupBy.shift用法及代码示例
- Python pyspark GroupBy.idxmin用法及代码示例
- Python pyspark GroupBy.median用法及代码示例
- Python pyspark GroupBy.tail用法及代码示例
- Python pyspark GroupBy.size用法及代码示例
- Python pyspark GroupBy.any用法及代码示例
- Python pyspark GroupBy.all用法及代码示例
- Python pyspark GroupBy.get_group用法及代码示例
- Python pyspark GroupBy.ffill用法及代码示例
- Python pyspark GroupBy.backfill用法及代码示例
- Python pyspark GroupBy.cumprod用法及代码示例
注:本文由纯净天空筛选整理自spark.apache.org大神的英文原创作品 pyspark.pandas.groupby.GroupBy.nunique。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。