在 Pandas 中,Panel是一个非常重要的三维数据容器。 3个轴的名称旨在为描述涉及面板数据的操作,尤其是面板数据的计量分析提供一些语义上的含义。
在 Pandas Panel.rtruediv()函数用于获取系列和 DataFrame /面板的浮点数划分。
用法: Panel.rtruediv(other, axis=0)
参数:
other: DataFrame 或面板
axis:广播轴
返回:面板
代码1:
# importing pandas module  
import pandas as pd  
import numpy as np  
  
df1 = pd.DataFrame({'a':['Geeks', 'For', 'geeks', 'real'],  
                    'b':[111, 123, 425, 1333]})  
  
df2 = pd.DataFrame({'a':['I', 'am', 'dataframe', 'two'],  
                    'b':[100, 100, 100, 100]})  
                      
data = {'item1':df1, 'item2':df2} 
  
# creating Panel  
panel = pd.Panel.from_dict(data, orient ='minor')  
print("panel['b'] is - \n\n", panel['b'])  
  
print("\nFloating Dividing panel['b'] with df2['b'] using rtruediv() method - \n")  
print("\n", panel['b'].rtruediv(df2['b'], axis = 0)) 
输出:
panel['b'] is - 
    item1  item2
0    111    100
1    123    100
2    425    100
3   1333    100
Floating Dividing panel['b'] with df2['b'] using rtruediv() method - 
       item1  item2
0  0.900901      1
1  0.813008      1
2  0.235294      1
3  0.075019      1
代码2:
# importing pandas module  
import pandas as pd  
import numpy as np  
  
df1 = pd.DataFrame({'a':['Geeks', 'For', 'geeks', 'for', 'real'],  
                    'b':[11, 1.025, 333, 114.48, 1333]})  
  
data = {'item1':df1, 'item2':df1}  
  
# creating Panel  
panel = pd.Panel.from_dict(data, orient ='minor')  
print("panel['b'] is - \n\n", panel['b'], '\n')  
  
# Create a 5 * 5 dataframe  
df2 = pd.DataFrame(np.random.rand(5, 2), columns =['item1', 'item2'])  
print("Newly create dataframe with random values is - \n\n", df2) 
  
print("\nFloating Dividing panel['b'] with df2 using rtruediv() method - \n")  
print(panel['b'].rtruediv(df2, axis = 0)) 
输出:
panel['b'] is - 
       item1     item2
0    11.000    11.000
1     1.025     1.025
2   333.000   333.000
3   114.480   114.480
4  1333.000  1333.000 
Newly create dataframe with random values is - 
       item1     item2
0  0.809990  0.358019
1  0.765535  0.101660
2  0.788052  0.742361
3  0.964031  0.618767
4  0.862207  0.131611
Floating Dividing panel['b'] with df2 using rtruediv() method - 
      item1     item2
0  0.073635  0.032547
1  0.746864  0.099180
2  0.002367  0.002229
3  0.008421  0.005405
4  0.000647  0.000099
代码3:
# importing pandas module  
import pandas as pd  
import numpy as np  
  
df1 = pd.DataFrame({'a':['Geeks', 'For', 'geeks', 'for', 'real'],  
                    'b':[11, 1.025, 333, 114.48, 1333]})  
                      
df2 = pd.DataFrame({'a':['I', 'am', 'DataFrame', 'number', 'two'],  
                    'b':[10, 10, 10, 110, 110]})                      
                      
data = {'item1':df1, 'item2':df2}  
  
# creating Panel  
panel = pd.Panel.from_dict(data, orient ='minor')  
  
print("panel['b'] is - \n\n", panel['b'], '\n')  
  
print("\nFloating Dividing panel['b']['item1'] with df2['b'] or panel['b']['item2'] using rtruediv() method - \n")  
print("\n", panel['b']['item1'].rtruediv(df2['b'], axis = 0)) 
输出:
panel['b'] is - 
       item1  item2
0    11.000     10
1     1.025     10
2   333.000     10
3   114.480    110
4  1333.000    110 
Floating Dividing panel['b']['item1'] with df2['b'] or panel['b']['item2'] using rtruediv() method - 
 0    0.909091
1    9.756098
2    0.030030
3    0.960867
4    0.082521
dtype:float64
相关用法
- Python pandas.map()用法及代码示例
 - Python Pandas Series.str.len()用法及代码示例
 - Python Pandas.factorize()用法及代码示例
 - Python Pandas TimedeltaIndex.name用法及代码示例
 - Python Pandas dataframe.ne()用法及代码示例
 - Python Pandas Series.between()用法及代码示例
 - Python Pandas DataFrame.where()用法及代码示例
 - Python Pandas Series.add()用法及代码示例
 - Python Pandas.pivot_table()用法及代码示例
 - Python Pandas Series.mod()用法及代码示例
 - Python Pandas Dataframe.at[ ]用法及代码示例
 - Python Pandas Dataframe.iat[ ]用法及代码示例
 - Python Pandas.pivot()用法及代码示例
 - Python Pandas dataframe.mul()用法及代码示例
 - Python Pandas.melt()用法及代码示例
 
注:本文由纯净天空筛选整理自Shivam_k大神的英文原创作品 Python | Pandas Panel.rtruediv()。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。
