当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python Pandas.factorize()用法及代码示例


Pandas .factorize()方法通过标识不同的值来帮助获得数组的数字表示形式。该方法可以同时使用pandas.factorize()Series.factorize()

参数:
values :1D sequence.
sort :[bool, Default is False] Sort uniques and shuffle labels.
na_sentinel:[ int, default -1] Missing Values to mark ‘not found’.

返回: Numeric representation of array



代码:解释factorize()方法的用法

# importing libraries 
import numpy as np 
import pandas as pd 
from pandas.api.types import CategoricalDtype 
  
labels, uniques = pd.factorize(['b', 'd', 'd', 'c', 'a', 'c', 'a', 'b']) 
  
print("Numeric Representation:\n", labels) 
print("Unique Values:\n", uniques)

# sorting the numerics 
label1, unique1 = pd.factorize(['b', 'd', 'd', 'c', 'a', 'c', 'a', 'b'],  
                                                           sort = True) 
  
print("\n\nNumeric Representation:\n", label1) 
print("Unique Values:\n", unique1)

# Missing values indicated 
label2, unique2 = pd.factorize(['b', None, 'd', 'c', None, 'a', ],  
                                              na_sentinel = -101) 
  
print("\n\nNumeric Representation:\n", label2) 
print("Unique Values:\n", unique2)

# When factorizing pandas object; unique will differ  
a = pd.Categorical(['a', 'a', 'c'], categories =['a', 'b', 'c']) 
  
label3, unique3 = pd.factorize(a) 
  
print("\n\nNumeric Representation:\n", label3) 
print("Unique Values:\n", unique3)



相关用法


注:本文由纯净天空筛选整理自Mohit Gupta_OMG 大神的英文原创作品 Python | Pandas.factorize()。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。