在 Pandas 中,Panel是一个非常重要的三维数据容器。 3个轴的名称旨在为描述涉及面板数据的操作,尤其是面板数据的计量分析提供一些语义上的含义。
在 Pandas Panel.rmul()
函数用于获取序列和 DataFrame /面板的乘积。
用法: Panel.rmul(other, axis=0)
参数:
other: DataFrame 或面板
axis:广播轴
返回:面板
代码1:
# importing pandas module
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'a':['Geeks', 'For', 'geeks', 'real'],
'b':[111, 123, 425, 1333]})
df2 = pd.DataFrame({'a':['I', 'am', 'dataframe', 'two'],
'b':[100, 100, 100, 100]})
data = {'item1':df1, 'item2':df2}
# creating Panel
panel = pd.Panel.from_dict(data, orient ='minor')
print("panel['b'] is - \n\n", panel['b'])
print("\nMultiplying panel['b'] with df2['b'] using rmul() method - \n")
print("\n", panel['b'].rmul(df2['b'], axis = 0))
输出:
panel['b'] is - item1 item2 0 111 100 1 123 100 2 425 100 3 1333 100 Multiplying panel['b'] with df2['b'] using rmul() method - item1 item2 0 11100 10000 1 12300 10000 2 42500 10000 3 133300 10000
代码2:
# importing pandas module
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'a':['Geeks', 'For', 'geeks', 'for', 'real'],
'b':[11, 1.025, 333, 114.48, 1333]})
data = {'item1':df1, 'item2':df1}
# creating Panel
panel = pd.Panel.from_dict(data, orient ='minor')
print("panel['b'] is - \n\n", panel['b'], '\n')
# Create a 5 * 5 dataframe
df2 = pd.DataFrame(np.random.rand(5, 2), columns =['item1', 'item2'])
print("Newly create dataframe with random values is - \n\n", df2)
print("\nMultiplying panel['b'] with df2 using rmul() method - \n")
print(panel['b'].rmul(df2, axis = 0))
输出:
panel['b'] is - item1 item2 0 11.000 11.000 1 1.025 1.025 2 333.000 333.000 3 114.480 114.480 4 1333.000 1333.000 Newly create dataframe with random values is - item1 item2 0 0.549490 0.658451 1 0.321557 0.139482 2 0.010817 0.775445 3 0.011675 0.333828 4 0.818014 0.462602 Multiplying panel['b'] with df2 using rmul() method - item1 item2 0 6.044385 7.242957 1 0.329596 0.142969 2 3.602168 258.223060 3 1.336504 38.216583 4 1090.412087 616.648529
代码3:
# importing pandas module
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'a':['Geeks', 'For', 'geeks', 'for', 'real'],
'b':[11, 1.025, 333, 114.48, 1333]})
df2 = pd.DataFrame({'a':['I', 'am', 'DataFrame', 'number', 'two'],
'b':[10, 10, 10, 110, 110]})
data = {'item1':df1, 'item2':df2}
# creating Panel
panel = pd.Panel.from_dict(data, orient ='minor')
print("panel['b'] is - \n\n", panel['b'], '\n')
print("\nMultiplying panel['b']['item1'] with df2['b'] or panel['b']['item2'] using rmul() method - \n")
print("\n", panel['b']['item1'].rmul(df2['b'], axis = 0))
输出:
panel['b'] is - item1 item2 0 11.000 10 1 1.025 10 2 333.000 10 3 114.480 110 4 1333.000 110 Multiplying panel['b']['item1'] with df2['b'] or panel['b']['item2'] using rmul() method - 0 110.00 1 10.25 2 3330.00 3 12592.80 4 146630.00 dtype:float64
相关用法
- Python pandas.map()用法及代码示例
- Python Pandas Series.str.len()用法及代码示例
- Python Pandas.factorize()用法及代码示例
- Python Pandas TimedeltaIndex.name用法及代码示例
- Python Pandas dataframe.ne()用法及代码示例
- Python Pandas Series.between()用法及代码示例
- Python Pandas DataFrame.where()用法及代码示例
- Python Pandas Series.add()用法及代码示例
- Python Pandas.pivot_table()用法及代码示例
- Python Pandas Series.mod()用法及代码示例
- Python Pandas Dataframe.at[ ]用法及代码示例
- Python Pandas Dataframe.iat[ ]用法及代码示例
- Python Pandas.pivot()用法及代码示例
- Python Pandas dataframe.mul()用法及代码示例
- Python Pandas.melt()用法及代码示例
注:本文由纯净天空筛选整理自Shivam_k大神的英文原创作品 Python | Pandas Panel.rmul()。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。