本文整理汇总了Python中trainer.Trainer.tune方法的典型用法代码示例。如果您正苦于以下问题:Python Trainer.tune方法的具体用法?Python Trainer.tune怎么用?Python Trainer.tune使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类trainer.Trainer
的用法示例。
在下文中一共展示了Trainer.tune方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pre_train
# 需要导入模块: from trainer import Trainer [as 别名]
# 或者: from trainer.Trainer import tune [as 别名]
def pre_train(data, das, nep = 600):
x = data
for ec, dc in das:
dc.x(ec.y)
tr = Trainer(ec.x, dc.y, src = x, dst = x, lrt = 0.005)
tr.tune(nep, npt = 10)
ec.x(x)
x = ec.y().eval()
del x
示例2: fine_tune
# 需要导入模块: from trainer import Trainer [as 别名]
# 或者: from trainer.Trainer import tune [as 别名]
def fine_tune(data, das, nep = 600):
x = data
## re-wire encoders and decoders
ecs, dcs = zip(*das)
sda = list(ecs) + list(reversed(dcs))
for i, j in zip(sda[:-1], sda[1:]):
j.x(i.y) # lower output -> higher input
tr = Trainer(sda[0].x, sda[-1].y, src = data, dst = data, lrt = 0.0005)
tr.tune(nep, npt= 10)
return tr
示例3: pre_train
# 需要导入模块: from trainer import Trainer [as 别名]
# 或者: from trainer.Trainer import tune [as 别名]
def pre_train(stk, dat, rate = 0.01, epoch = 1000):
"""
pre-train each auto encoder in the stack
"""
import time
from trainer import Trainer
tm = time.clock()
print 'pre-train:', stk.dim; sys.stdout.flush()
x = dat
r = rate
for ae in stk.sa:
print ae.dim
t = Trainer(ae, src = x, dst = x, lrt = r)
t.tune(epoch, 20)
x = ae.ec(x).eval()
r = r * 2.0
tm = time.clock() - tm
print 'ran for {:.2f}m\n'.format(tm/60.); sys.stdout.flush()
示例4: fine_tune
# 需要导入模块: from trainer import Trainer [as 别名]
# 或者: from trainer.Trainer import tune [as 别名]
def fine_tune(stk, dat, rate = 0.01, epoch = 50):
"""
fine-tune the whole stack of autoencoders
"""
import time
from trainer import Trainer
tm = time.clock()
print 'find-tune:', stk.dim; sys.stdout.flush()
x = dat
dpt = len(stk)
## the training should be slower when parameters is more numerous
t = Trainer(stk, src = x, dst = x, lrt = rate/ (2*dpt) )
## fine tune requires more steps when network goes deeper
t.tune(epoch * 2 * dpt, epoch)
tm = time.clock() - tm
print 'ran for {:.2f}m\n'.format(tm/60.); sys.stdout.flush()