当前位置: 首页>>代码示例>>Python>>正文


Python Variable.resize方法代码示例

本文整理汇总了Python中torch.autograd.Variable.resize方法的典型用法代码示例。如果您正苦于以下问题:Python Variable.resize方法的具体用法?Python Variable.resize怎么用?Python Variable.resize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.autograd.Variable的用法示例。


在下文中一共展示了Variable.resize方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: range

# 需要导入模块: from torch.autograd import Variable [as 别名]
# 或者: from torch.autograd.Variable import resize [as 别名]
        if target[i] < 10:
            new_inp.append(inp[i])
            new_target.append(target[i:i+1])

    return torch.cat(new_inp,0), torch.cat(new_target,0)


for epoch in range(0,30):

    for i, (inp, target) in enumerate(train_loader):

        inp, target = prune_by_label(inp,target)

        inp = Variable(inp.cuda())
        bs = inp.size(0)
        inp = inp.resize(bs, 784)
        target = Variable(target.cuda())

        h1 = net.compute_h1(inp)

        y, target_soft = net.compute_y(inp, target, mixup=True, visible_mixup=False)

        loss = bce_loss(y, target_soft)

        opt.zero_grad()
        loss.backward()
        opt.step()

        if i == 0:
            clear = True
        else:
开发者ID:kazk1018,项目名称:manifold_mixup,代码行数:33,代码来源:simple_mnist_exp.py

示例2: feature_extractor

# 需要导入模块: from torch.autograd import Variable [as 别名]
# 或者: from torch.autograd.Variable import resize [as 别名]
def feature_extractor():
	#trainloader = Train_Data_Loader( VIDEO_DIR, resize_w=128, resize_h=171, crop_w = 112, crop_h = 112, nb_frames=16)
	net = C3D(487)
        print('net', net)
	## Loading pretrained model from sports and finetune the last layer
	net.load_state_dict(torch.load('/data1/miayuan/pretrained_models/c3d.pickle'))
	if RUN_GPU : 
		net.cuda(0)
        net.eval()
        print('net', net)
	feature_dim = 4096 if EXTRACTED_LAYER != 5 else 8192
	video_list = os.listdir(VIDEO_DIR)
        print('video_list', video_list)
        if not os.path.isdir(OUTPUT_DIR):
            os.mkdir(OUTPUT_DIR)
        f = h5py.File(os.path.join(OUTPUT_DIR, OUTPUT_NAME), 'w')
        
        def count_files(directory, prefix_list):
            lst = os.listdir(directory)
            cnt_list = [len(fnmatch.filter(lst, x+'*')) for x in prefix_list]
            return cnt_list

        
	for video_name in video_list: 
		video_path = os.path.join(VIDEO_DIR, video_name)
                print('video_path', video_path)
		#video = imageio.get_reader(video_path,  'ffmpeg')
                #print('video', video)
                all_cnt = count_files(video_path, ('image_'))
		total_frames = all_cnt[0]
                print 'Total frames: %d'%total_frames 
		valid_frames = total_frames/nb_frames * nb_frames
		print 'Total validated frames: %d'%valid_frames
		index_w = np.random.randint(resize_w - crop_w) ## crop
		index_h = np.random.randint(resize_h - crop_h) ## crop
		#features = np.array((valid_frames/nb_frames, feature_dim))
                features = []
                #print('features', features)
		print 'NB features: %d' %(valid_frames/nb_frames)
                #print(io.imread(os.path.join(video_path, 'image_{:04d}.jpg'.format(1))).shape)		
		for i in range(valid_frames/nb_frames) :   
                        clip = np.array([resize(io.imread(os.path.join(video_path, 'image_{:04d}.jpg'.format(j))), output_shape=(resize_w, resize_h), preserve_range=True) for j in range(i * nb_frames+1, (i+1) * nb_frames+1)])
			#clip = np.array([resize(video.get_data(j), output_shape=(resize_w, resize_h), preserve_range=True) for j in range(i * nb_frames, (i+1) * nb_frames)])
			clip = clip[:, index_w: index_w+ crop_w, index_h: index_h+ crop_h, :]
			clip = torch.from_numpy(np.float32(clip.transpose(3, 0, 1, 2)))
			clip = Variable(clip).cuda() if RUN_GPU else Variable(clip)			
			clip = clip.resize(1, 3, nb_frames, crop_w, crop_h)
                        #print('clip', clip)
			_, clip_output = net(clip, EXTRACTED_LAYER)
                        #print('clip_output', clip_output)  
			clip_feature  = (clip_output.data).cpu()  
                        features.append(clip_feature)
                        #features[i] = np.array(clip_feature)
                features = torch.cat(features, 0)
                features = features.numpy()
                print('features', features)       
               
                fgroup = f.create_group(video_name)
		fgroup.create_dataset('c3d_features', data=features)
                fgroup.create_dataset('total_frames', data=np.array(total_frames))
                fgroup.create_dataset('valid_frames', data=np.array(valid_frames))
	
		#with open(os.path.join(OUTPUT_DIR, video_name[:-4]), 'wb') as f :
		#	pickle.dump( features, f )
		print '%s has been processed...'%video_name
开发者ID:OwalnutO,项目名称:Pytorch_C3D_Feature_Extractor,代码行数:67,代码来源:feature_extractor_frm.py


注:本文中的torch.autograd.Variable.resize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。