当前位置: 首页>>代码示例>>Python>>正文


Python Variable.numpy方法代码示例

本文整理汇总了Python中torch.autograd.Variable.numpy方法的典型用法代码示例。如果您正苦于以下问题:Python Variable.numpy方法的具体用法?Python Variable.numpy怎么用?Python Variable.numpy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.autograd.Variable的用法示例。


在下文中一共展示了Variable.numpy方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: loss_fn

# 需要导入模块: from torch.autograd import Variable [as 别名]
# 或者: from torch.autograd.Variable import numpy [as 别名]
    loss = loss_fn(y_pred, ypt)
    
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    y_te = model(Variable(torch.from_numpy(Xte)))
    
    if t % 1000 == 0:
        for i in range(100):
            y_te += model(Variable(torch.from_numpy(Xte))) 
        y_te /= 101.
        
        print(t, 
              'loss = %.3f' % loss.item(), 
              'acc_tr = %.3f' % np.mean(y_pred.argmax(1).numpy() == ypt.numpy()),
              'acc_te = %.3f' % np.mean(y_te.argmax(1).numpy() == Variable(torch.from_numpy(ytr)).long().numpy()))

        ygreed = model(Variable(torch.from_numpy(greed)))
        
        for i in range(100):
            ygreed += model(Variable(torch.from_numpy(greed)))
        

        plt.scatter(greed[:, 0], greed[:, 1], c=ygreed.argmax(1).numpy(), alpha=0.5)
        plt.axis('equal')
        plt.xlim(-10, 10)
        plt.ylim(-10, 10)
        plt.title('Accuracy = %.3f' % np.mean(y_pred.argmax(1).numpy() == ypt.numpy()))
        plt.xlabel('sigma 1')
        plt.ylabel('sigma 2')
开发者ID:AlliedToasters,项目名称:elko_den,代码行数:33,代码来源:toy-problem.py

示例2: transform

# 需要导入模块: from torch.autograd import Variable [as 别名]
# 或者: from torch.autograd.Variable import numpy [as 别名]
if(opt.color_histogram_matching):
    styleImg = transform(util.open_and_resize_image(opt.style_image,256)) # 1x3x512x512
    contentImg = transform(util.open_and_resize_image(opt.content_image,256)) # 1x3x512x512
    styleImg = styleImg.unsqueeze(0)
    contentImg = contentImg.unsqueeze(0)

    styleImg = util.match_color_histogram(styleImg.numpy(),contentImg.numpy())
    styleImg = Variable(torch.from_numpy(styleImg))
    contentImg = Variable(contentImg)
elif(opt.luminance_only):
    styleImg = transform(util.open_and_resize_image(opt.style_image,256)) # 1x3x512x512
    contentImg = transform(util.open_and_resize_image(opt.content_image,256)) # 1x3x512x512
    styleImg = styleImg.unsqueeze(0)
    contentImg = contentImg.unsqueeze(0)
    styleImg,contentImg,content_iq = util.luminance_transfer(styleImg.numpy(),contentImg.numpy())
    styleImg = Variable(torch.from_numpy(styleImg))
    contentImg = Variable(torch.from_numpy(contentImg))
else:
    styleImg = load_image(opt.style_image) # 1x3x512x512
    contentImg = load_image(opt.content_image) # 1x3x512x512

if(opt.cuda):
    styleImg = styleImg.cuda()
    contentImg = contentImg.cuda()

###############   MODEL   ####################
vgg = VGG()
vgg.load_state_dict(torch.load(opt.vgg_dir))
for param in vgg.parameters():
    param.requires_grad = False
开发者ID:HadXu,项目名称:machine-learning,代码行数:32,代码来源:train.py

示例3: linear

# 需要导入模块: from torch.autograd import Variable [as 别名]
# 或者: from torch.autograd.Variable import numpy [as 别名]
optimizer.step()

# You can also do optimization at the low level as shown below.
# linear.weight.data.sub_(0.01 * linear.weight.grad.data)
# linear.bias.data.sub_(0.01 * linear.bias.grad.data)

# Print out the loss after optimization.
pred = linear(x)
loss = criterion(pred, y)
print('loss after 1 step optimization: ', loss.data[0])


#======================== Loading data from numpy ========================#
a = np.array([[1,2], [3,4]])
b = torch.from_numpy(a)      # convert numpy array to torch tensor
c = b.numpy()                # convert torch tensor to numpy array


#===================== Implementing the input pipline =====================#
# Download and construct dataset.
train_dataset = dsets.CIFAR10(root='../data/',
                               train=True, 
                               transform=transforms.ToTensor(),
                               download=True)

# Select one data pair (read data from disk).
image, label = train_dataset[0]
print (image.size())
print (label)

# Data Loader (this provides queue and thread in a very simple way).
开发者ID:AbhinavJain13,项目名称:pytorch-tutorial,代码行数:33,代码来源:main.py

示例4: print

# 需要导入模块: from torch.autograd import Variable [as 别名]
# 或者: from torch.autograd.Variable import numpy [as 别名]
    encoder.load_state_dict(torch.load(
        'colorizer.pkl', map_location=location))
except:
    print('ERROR: please make sure you have a model with name `colorizer.pkl` in your path')

encoder.eval()
# encoder.parameters()

outputs = []
images = []
labels = []
print(test_cases)
for c in test_cases:
    print('encoding ', c)
    image,_, label = test_dataset[c]
    image = Variable(torch.from_numpy(np.array([image.numpy()])), volatile=True)
    label = Variable(label, volatile=True)
    if 'cuda' in location:
        image = image.cuda()
        label = label.cuda()

    images.append(image)
    labels.append(label)
    output = encoder(image)
    outputs.append(output)

f, axarr = plt.subplots(len(test_cases), 3)

T = 0.38
q = 313  # number of colours
nnenc = NNEncode()
开发者ID:stanleynguyen,项目名称:corolization,代码行数:33,代码来源:test.py


注:本文中的torch.autograd.Variable.numpy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。