当前位置: 首页>>代码示例>>Python>>正文


Python RandomForestClassifier.partial_fit方法代码示例

本文整理汇总了Python中sklearn.ensemble.RandomForestClassifier.partial_fit方法的典型用法代码示例。如果您正苦于以下问题:Python RandomForestClassifier.partial_fit方法的具体用法?Python RandomForestClassifier.partial_fit怎么用?Python RandomForestClassifier.partial_fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.RandomForestClassifier的用法示例。


在下文中一共展示了RandomForestClassifier.partial_fit方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: xrange

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import partial_fit [as 别名]
            tp += 1
        if y_t != y_p and y_t == 1:
            fn += 1
        if y_t != y_p and y_t == 0:
            fp += 1
        if y_t == y_p and y_t == 0:
            tn += 1
    return tp, tn, fp, fn


if classification:

    #print "PCA ratios: ", pca.explained_variance_ratio_
    if partialFit:
        for i in xrange(10):
            clf.partial_fit(X_tr, Y_tr, [0,1])
            tp, tn, fp, fn = _tp_tn_fp_fn(Y_st, clf.predict(X_tst))
            print tp, tn, fp, fn
            print "tp", "tn", "fp", "fn"

            print "Accuracy ", (tp+tn)/(tp+tn+fp+fn), "Negative precision ", tn/(tn+fn+0.0001), "Precision ", tp/(tp+fp+0.00001)
            print "True performance ", tn/(fp+tn)
    else:
        clf.fit(X_tr, Y_tr)
        tp, tn, fp, fn = _tp_tn_fp_fn(Y_st, clf.predict(X_tst))
        print tp, tn, fp, fn
        print "tp", "tn", "fp", "fn"

        print "Accuracy ", (tp+tn)/(tp+tn+fp+fn), "Negative precision ", tn/(tn+fn+0.0001), "Precision ", tp/(tp+fp+0.00001)
        print "True performance ", tn/(fp+tn)
        import cPickle
开发者ID:kudkudak,项目名称:asteroid-challenge,代码行数:33,代码来源:model_scikitlearn.py


注:本文中的sklearn.ensemble.RandomForestClassifier.partial_fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。