当前位置: 首页>>代码示例>>Python>>正文


Python RandomForestClassifier.get_params方法代码示例

本文整理汇总了Python中sklearn.ensemble.RandomForestClassifier.get_params方法的典型用法代码示例。如果您正苦于以下问题:Python RandomForestClassifier.get_params方法的具体用法?Python RandomForestClassifier.get_params怎么用?Python RandomForestClassifier.get_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.RandomForestClassifier的用法示例。


在下文中一共展示了RandomForestClassifier.get_params方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: onescore

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
def onescore(X, Y, Xtest):
    clf = RandomForestClassifier(oob_score=True, n_jobs=-1, n_estimators=1000, max_features=300, random_state=0)
    clf.fit(X, Y)
    print "oob_score = ", clf.oob_score_
    print clf.get_params()
    ytest = clf.predict(Xtest)
    output(ytest, "try_004.csv")
开发者ID:kbai,项目名称:us,代码行数:9,代码来源:try_004.py

示例2: test_set_params

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
def test_set_params():
    """set_params should be able to set estimators"""
    clf1 = LogisticRegression(random_state=123, C=1.0)
    clf2 = RandomForestClassifier(random_state=123, max_depth=None)
    clf3 = GaussianNB()
    eclf1 = VotingClassifier([('lr', clf1), ('rf', clf2)], voting='soft',
                             weights=[1, 2])
    assert_true('lr' in eclf1.named_estimators)
    assert_true(eclf1.named_estimators.lr is eclf1.estimators[0][1])
    assert_true(eclf1.named_estimators.lr is eclf1.named_estimators['lr'])
    eclf1.fit(X, y)
    assert_true('lr' in eclf1.named_estimators_)
    assert_true(eclf1.named_estimators_.lr is eclf1.estimators_[0])
    assert_true(eclf1.named_estimators_.lr is eclf1.named_estimators_['lr'])

    eclf2 = VotingClassifier([('lr', clf1), ('nb', clf3)], voting='soft',
                             weights=[1, 2])
    eclf2.set_params(nb=clf2).fit(X, y)
    assert_false(hasattr(eclf2, 'nb'))

    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
    assert_equal(eclf2.estimators[0][1].get_params(), clf1.get_params())
    assert_equal(eclf2.estimators[1][1].get_params(), clf2.get_params())

    eclf1.set_params(lr__C=10.0)
    eclf2.set_params(nb__max_depth=5)

    assert_true(eclf1.estimators[0][1].get_params()['C'] == 10.0)
    assert_true(eclf2.estimators[1][1].get_params()['max_depth'] == 5)
    assert_equal(eclf1.get_params()["lr__C"],
                 eclf1.get_params()["lr"].get_params()['C'])
开发者ID:abecadel,项目名称:scikit-learn,代码行数:34,代码来源:test_voting_classifier.py

示例3: training_and_test

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
def training_and_test(token, train_data, test_data, num_classes, result):
    """Train and test

    Args:
        token (:obj:`str`): token representing this run
        train_data (:obj:`tuple` of :obj:`numpy.array`): Tuple of training feature and label
        test_data (:obj:`tuple` of :obj:`numpy.array`): Tuple of testing feature and label
        num_classes (:obj:`int`): Number of classes
        result (:obj:`pyActLearn.performance.record.LearningResult`): LearningResult object to hold learning result
    """
    model = RandomForestClassifier(n_estimators=20, criterion="entropy")
    model.fit(train_data[0], train_data[1].flatten())
    # Test
    predicted_y = model.predict(test_data[0])
    predicted_proba = model.predict_proba(test_data[0])
    # Evaluate the Test and Store Result
    confusion_matrix = get_confusion_matrix(num_classes=num_classes,
                                            label=test_data[1].flatten(), predicted=predicted_y)
    result.add_record(model.get_params(), key=token, confusion_matrix=confusion_matrix)
    # In case any label is missing, populate it
    if predicted_proba.shape[1] != num_classes:
        temp_array = np.zeros((predicted_proba.shape[0], num_classes), np.float32)
        for i in range(len(model.classes_)):
            temp_array[:, model.classes_[i]] = predicted_proba[:, i]
        predicted_proba = temp_array
    return predicted_y, predicted_proba
开发者ID:TinghuiWang,项目名称:pyActLearn,代码行数:28,代码来源:b1_randomforest.py

示例4: cross_validation

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
def cross_validation(X, y):
    #fig = plt.figure()
    #ax = fig.add_subplot(111, projection='3d')
    assert(len(y) == len(X))
    # Split the dataset in two equal parts
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=42)
 
    depth = [8, 16, 32, 64]
    split = [1, 2, 4, 8, 16, 32, 64]
    best_score = 0 
    best_train_score = 0
    best_param = None
    for d in depth:
        for s in split:
            model = RandomForestClassifier(n_estimators=500, criterion="entropy", max_features="sqrt", max_depth=d, min_samples_split=s, n_jobs=-1)
            model = model.fit(X_train, y_train)
            print "Depth: %d  split: %d" % (d, s)
            print "Model trainning score:"
            score_train = model.score(X_train, y_train)
            print score_train
            #ax.scatter(d, s, score_train, c='b', marker='o')
            print "Model test score:"
            score_test = model.score(X_test, y_test)
            print score_test
            #ax.scatter(d, s, score_test, c='r', marker='^')
 
            if score_test > best_score:
                best_score = score_test
                best_train_score = score_train
                best_param = model.get_params()
    print "=================="
    print best_train_score
    print best_score
    print best_param
    return best_param
开发者ID:21zhouyun,项目名称:KaggleOCR,代码行数:37,代码来源:random_forest_util.py

示例5: fit

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
	def fit(self,train_X,train_Y):
		#split set into ones and zeros
		zeros = train_X[train_Y == 0,:]
		ones = train_X[train_Y == 1,:]
		num_ones = ones.shape[0]
		# compute number of chunks to split
		num_chunks = int(zeros.shape[0]/num_ones)
		chunks = np.array_split(zeros,num_chunks)
		#train rfs
		i = 0
		for chunk in chunks:
			
			print('training random forest %s of %s' %(i,num_chunks))
			chunk_rf = RandomForestClassifier(n_estimators = 1000, n_jobs = -1)
			print(chunk_rf.get_params())
			chunk_train_X = np.concatenate([chunk,ones])
			chunk_train_Y = np.concatenate([np.zeros([chunk.shape[0],1]),np.ones([num_ones,1])]).ravel()
			#cross_validation
			if self.weights is not None:
				print('cross_validation')
				scores = cross_validation.cross_val_score(chunk_rf, chunk_train_X, chunk_train_Y, cv = 10, n_jobs = -1)
				print(scores.mean())
				self.weights.append(scores.mean())
			#train
			chunk_rf.fit(chunk_train_X,chunk_train_Y)
			self.rfs.append(chunk_rf)
			i+=1
开发者ID:quasi-coherent,项目名称:Kaggle-Santander,代码行数:29,代码来源:hella_rfs.py

示例6: train_model_03

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
def train_model_03(dataset_id):
    # Random Forest
    X, Y, test = prepare_data_for_training(dataset_id)
    clf = RandomForestClassifier(n_estimators=300, min_samples_split=150, 
                                 bootstrap=False, criterion="gini", 
                                 max_depth=117, min_samples_leaf=3, n_jobs=-1)
    train_and_make_predictions(clf, X, Y, test, 
                               "RandomForest %s" % clf.get_params())
开发者ID:nirmalyaghosh,项目名称:kaggle,代码行数:10,代码来源:script.py

示例7: tuning_randomforest

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
def tuning_randomforest(X, y):
    clf = RandomForestClassifier(n_estimators=10000, criterion='entropy', max_depth=6,
                                 min_samples_split=2, min_samples_leaf=1,
                                 min_weight_fraction_leaf=0,
                                 max_features=0.2, n_jobs=-1, class_weight='balanced_subsample',
                                 verbose=0)
    print 'parameters:', clf.get_params()
    skf = StratifiedShuffleSplit(y, n_iter=1, test_size=0.25, random_state=0)
    for train_index, val_index in skf:
        X_train, X_val = X[train_index], X[val_index]
        y_train, y_val = y[train_index], y[val_index]
        clf.fit(X_train, y_train)
        print 'train accuracy', clf.score(X_train, y_train)
        y_val_pred = clf.predict(X_val)
        print 'val auc:', roc_auc_score(y_val, y_val_pred)
开发者ID:Peishen-Jia,项目名称:DataCastle,代码行数:17,代码来源:tuning.py

示例8: train_test_split

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
trainingSet = np.vstack((trainingSetEllipticals, trainingSetSpirals))  #using only elliptical and spiral for training
np.random.shuffle(trainingSet)
trainingSetLabels = trainingSet[:,12]  #putting labels in separate array

trainingSetLabels[trainingSetLabels == 0] = -1 #replacing all 0 with -1 to match sklearn format

trainingSet = trainingSet[:, 1:11] #removing label cols from actual inputs

trainingSet, testingSet, trainingSetLabels, testingSetLabels = train_test_split(trainingSet, trainingSetLabels, test_size = 0.6, random_state = 0) #fixes random_state so results reproducible

startTime = time.time()
print "Time before training = ", startTime

clf = RandomForestClassifier() #No max depth initial, tweak as necessary later
clf = clf.fit(trainingSet, trainingSetLabels)

print "Params after training:"
print clf.get_params()

trainingAccuracy = clf.score(trainingSet, trainingSetLabels)

print "Training accuracy = ", trainingAccuracy

testingAccuracy = clf.score(testingSet, testingSetLabels)

print "Testing accuracy = ", testingAccuracy

print "Done training and testing! Time = ", time.time() - startTime, "seconds"

开发者ID:SunR,项目名称:AstroP2,代码行数:30,代码来源:ap2_sklearn_RF1_combineddata1.py

示例9: float

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
   	    print "PLS Training error " , float(error)/yp_t.shape[0]
 	    yp_new = pls.predict(Xp_v, copy=True)
	    yp_pred = (yp_new[:,0] > yp_new[:,1]).astype(int)
	    #print y_new, y_pred, y_v
	    #print ((y_v - y_pred) ** 2).sum(), y_v.shape[0]
	    error = ((yp_v - yp_pred) ** 2).sum()
	    print "PLS Validation error " , float(error)/yp_v.shape[0]

	    X_new = pls.transform(X)
	    rf = RandomForestClassifier(n_estimators=500, max_depth=None, max_features=int(math.sqrt(n_components)), min_samples_split=100, random_state=144, n_jobs=4)
	    #print "shapes ", X_new.shape, y.shape
	    #print X_new,y
            X_t, X_v, y_t, y_v = tts(X_new,yd,train_size=0.85)

	    rf.fit(X_t, y_t)
            print "Random Forest Classifier: ", rf.get_params()
	    print "Covariance Classifier Training score: ", rf.score(X_t, y_t)
	    print "Covariance Classifier Validation score: ", rf.score(X_v, y_v)
	    #print "Class prob: ", zip(rf.predict_proba(X_v), y_v)

            sample_weights = rf.predict_proba(pls.transform(Xp_t))[:,1]
	    print sample_weights.shape
	    sample_weights = abs(sample_weights-0.5)

	    for a in [.01, .1, .3, 1, 3, 10, 20, 30, 40, 50, 100]:
                clf = SGDClassifier(alpha=a,loss=algo,n_iter=20) 
	        clf.fit(Xp_t,yp_t,sample_weight=sample_weights)
                clf2 = SGDClassifier(alpha=a,loss=algo,n_iter=20) 
	        clf2.fit(Xp_t,yp_t)
		print "alpha: ", a
	        print "Target score with weights: ", clf.score(Xt,yt)
开发者ID:choudharydhruv,项目名称:dec-meg-2014,代码行数:33,代码来源:cov_shift.py

示例10: with

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
features_list = df.columns.values[1::]

# Fit a random forest with (mostly) default parameters to determine feature importance
forest = RandomForestClassifier(oob_score=True, n_estimators=10000)
forest.fit(X, y)
feature_importance = forest.feature_importances_

# make importances relative to max importance
feature_importance = 100.0 * (feature_importance / feature_importance.max())

# Get the indexes of all features over the importance threshold
important_idx = np.where(feature_importance)[0]

# Get the sorted indexes of important features
sorted_idx = np.argsort(feature_importance[important_idx])[::-1]
print "\nFeatures sorted by importance (DESC):\n", important_idx[sorted_idx]

# Adapted from http://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html
pos = np.arange(sorted_idx.shape[0]) + .5
plt.subplot(1, 2, 2)
plt.barh(pos, feature_importance[important_idx][sorted_idx[::-1]], align='center')
plt.yticks(pos, important_idx[sorted_idx[:-1]])
plt.xlabel('Relative Importance')
plt.title('Variable Importance')
plt.show()

sorted_idx
feature_importance
forest.get_params()
df.filter(regex='Survived|Age_sc|SibSp|Parch|Fare_[0, 7.896]|Fare_[7.896, 14.454]|Fare_[14.454, 31.275]|Fare_[31.275, 512.329]|Sex|Pclass|Child|FamilySize|Family|Title_id')
开发者ID:jzhao891,项目名称:Titanic-prediction,代码行数:32,代码来源:prediction-randomForest.py

示例11: RandomForestClassifier

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
X_test=np.loadtxt("X_test.gz",delimiter=",")
####################################################################################
####################################################################################
####################################################################################
#classifier
RFmodel = RandomForestClassifier(
        n_estimators=10,        #number of trees to generate
        max_features='auto',    #consider sqrt of number of features when splitting
        n_jobs=1,               #run in parallel on all cores
        criterion="entropy"
        )

#train
RFmodel = RFmodel.fit(X_train, Y_train)
#get parameters
params=RFmodel.get_params()
#score on training set
acc_rate=RFmodel.score(X_train,Y_train)
print acc_rate
#feature importances
feat_imp=RFmodel.feature_importances_
#predict probabilities
test_probs=RFmodel.predict_proba(X_test)

#output test set probabilities to csv file
columns=['ARSON', 'ASSAULT', 'BAD CHECKS', 'BRIBERY',
            'BURGLARY', 'DISORDERLY CONDUCT',
            'DRIVING UNDER THE INFLUENCE', 'DRUG/NARCOTIC',
            'DRUNKENNESS', 'EMBEZZLEMENT', 'EXTORTION',
            'FAMILY OFFENSES', 'FORGERY/COUNTERFEITING', 'FRAUD',
            'GAMBLING', 'KIDNAPPING', 'LARCENY/THEFT',
开发者ID:golbeck,项目名称:Kaggle,代码行数:33,代码来源:RF_v0.py

示例12: ExtraTreesClassifier

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
    clf_etree = ExtraTreesClassifier(n_estimators=1000, max_depth=None, max_features=int(math.sqrt(n_features)), min_samples_split=100, random_state=144, n_jobs=4);
    clf_etree.fit(X_train, y_train)
    print "Validation set score: ERF " , clf_etree.score(X_val, y_val)

    clf_boost = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),algorithm="SAMME", n_estimators=500, random_state=74494, learning_rate=0.8) 
    clf_boost.fit(X_train, y_train)
    print "Validation set score: ABOOST " , clf_boost.score(X_val, y_val)


    #clf_gboost = GradientBoostingClassifier(n_estimators=int(reg), random_state=74494, learning_rate=0.2) 
    #clf_gboost.fit(X_train, y_train)
    #print "Validation set score:LR " , clf_gboost.score(X_val, y_val)


    print "Classifier:"
    print clf, clf.get_params()
    print clf_etree, clf_etree.get_params()
    print clf_boost, clf_boost.get_params()
    

    if(fe==1): #L1 norm based feature elimination
        clf_fe = LogisticRegression(C=1000,penalty='l1',random_state=0)
        clf_fe.fit(X_train, y_train)
        X_train = X_train[:,clf_fe.coef_.ravel()!=0]
        print "Xtrain.shape: ", X_train.shape
        X_val = X_val[:,clf_fe.coef_.ravel()!=0]

        clf2_l = svm.SVC(kernel='linear', C=reg)
        clf2_l.fit(X_train, y_train)
        print "Lasso Validation set score filtered coeff linear: " , clf2_l.score(X_val, y_val)
        clf2 = svm.SVC(kernel='rbf', C=reg, gamma=g)
开发者ID:choudharydhruv,项目名称:dec-meg-2014,代码行数:33,代码来源:forest.py

示例13: RandomForestClassifier

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
from sklearn.ensemble import RandomForestClassifier


if '--example' in sys.argv:
    trainingdata = [[1, 1], [2, 0.5], [-1, -1], [-2, -2]]
    traininglabel = [1, 1, -1, -1]
    testdata = [[1, 3], [-3, -3]]
    model = RandomForestClassifier()
    model.fit(trainingdata, traininglabel)
    output = model.predict(testdata)
    for label in output: 
        print label
    probas = model.predict_proba(testdata)
    for label in probas:
        print label
    for weights in model.get_params():
        print weights
    for i, gini_imp in enumerate(model.feature_importances_):
        print "gini係数 index = ", i, gini_imp


if '--learn' in sys.argv:
    import json
    anses = []
    traings = []
    for line in open('./learning.json').read().split('\n'):
        if line.strip() == "" : continue
        ans_label, data = json.loads(line.strip())
        anses.append(ans_label)
        traings.append(data)
    model = RandomForestClassifier()
开发者ID:GINK03,项目名称:KindleReferencedIndexScore,代码行数:33,代码来源:main.py

示例14: RandomForestClassifier

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
from sklearn.ensemble import RandomForestClassifier
# train the model
wqp_rf = RandomForestClassifier()
wqp_rf.fit(wqp_train_SX, wqp_train_y)
# predict and evaluate performance
wqp_rf_predictions = wqp_rf.predict(wqp_test_SX)
meu.display_model_performance_metrics(true_labels=wqp_test_y, predicted_labels=wqp_rf_predictions, 
                                      classes=wqp_label_names)


# ## Hyperparameter tuning with Grid Search & Cross Validation

# In[23]:

print(wqp_rf.get_params())


# ### Get the best hyperparameter values

# In[24]:

from sklearn.model_selection import GridSearchCV

param_grid = {
                'n_estimators': [100, 200, 300, 500], 
                'max_features': ['auto', None, 'log2']    
              }

wqp_clf = GridSearchCV(RandomForestClassifier(random_state=42), param_grid, cv=5,
                       scoring='accuracy')
开发者ID:Zoery,项目名称:practical-machine-learning-with-python,代码行数:32,代码来源:predictive_analytics.py

示例15:

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import get_params [as 别名]
					nthread = 4, 
					min_child_weight = 1, 
					subsample= 0.8, 
					seed = 1337, 
					objective= 'multi:softprob', 
					max_depth = 7, 
					gamma= .2)

# use the xgb interface
xgb_param = clf.get_xgb_params()
xgb_param['num_class'] = 5
xgb_param['eval_metric'] = 'mlogloss'
Xg_train = xgb.DMatrix(X_train, label=y_train, missing=np.nan)
cvresult = xgb.cv(xgb_param, 
				  Xg_train, 
 				  num_boost_round = clf.get_params()['n_estimators'],
 				  nfold = 5,
 				  show_progress = True,
				  early_stopping_rounds = 100)
clf.set_params(n_estimators=cvresult.shape[0])
clf.fit(X_train, y_train)
best_outcome_params = clf.get_params()
best_outcome_score = cvresult.min()

try:
	# predict the outcome probabilities
	y_pred = grid.predict_proba(X_test)
except:
	# predict the outcome probabilities
	y_pred = clf.predict_proba(X_test)
开发者ID:pkepley,项目名称:kaggle.austin.animals,代码行数:32,代码来源:XGBApproach.py


注:本文中的sklearn.ensemble.RandomForestClassifier.get_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。