当前位置: 首页>>代码示例>>Python>>正文


Python RandomForestClassifier.classes_方法代码示例

本文整理汇总了Python中sklearn.ensemble.RandomForestClassifier.classes_方法的典型用法代码示例。如果您正苦于以下问题:Python RandomForestClassifier.classes_方法的具体用法?Python RandomForestClassifier.classes_怎么用?Python RandomForestClassifier.classes_使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.RandomForestClassifier的用法示例。


在下文中一共展示了RandomForestClassifier.classes_方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: range

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import classes_ [as 别名]
                feature_importance = []
                for k in range(5):
                    model = AdaBoostClassifier(n_estimators=100, learning_rate=1,
                                               base_estimator=DecisionTreeClassifier(max_depth=1, class_weight={True: 0.8, False: 0.2}))
                    # model1 = RandomForestClassifier(n_estimators=100, max_depth=1, class_weight={True: 0.8, False: 0.2})
                    # model2 = BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=1, class_weight={True: 0.8, False: 0.2}),
                    #                            n_estimators=100, max_samples=1.0, max_features=1.0)
                    # model1 = LinearSVM(C=1, class_weight={True: 0.8, False: 0.2})
                    # model1 = SGDClassifier(shuffle=True, loss="log", class_weight={True: 0.8, False: 0.2})
                    model1 = SVC(kernel="rbf", probability=True, class_weight={True: 0.8, False: 0.2})
                    # model2 = SVC(kernel="poly", probability=True, class_weight={True: 0.8, False: 0.2}, degree=2)
                    # model1 = LinearDiscriminantAnalysis()
                    # svm.classes_ = [True, False]
                    # pre_model = BernoulliRBM(learning_rate=0.1, n_components=10, n_iter=20)
                    # model3 = Pipeline(steps=[("rbm", pre_model), ("svm", svm)])
                    model.classes_ = [True, False]
                    model1.classes_ = [True, False]
                    # model2.classes_ = [True, False]

                    positive_train_labels = [i for i in range(len(train_1_labels)) if train_1_labels[i]]
                    positive_train_labels = list(np.random.choice(positive_train_labels, size=int(len(positive_train_labels)*0.8), replace=False))
                    # positive_test_labels = [i for i in range(len(test_1_labels)) if test_1_labels[i]]
                    negative_train_labels = list(np.random.choice([i for i in range(len(train_1_labels)) if i not in positive_train_labels], replace=False, size=len(positive_train_labels)))
                    # negative_test_labels = list(np.random.choice([i for i in range(len(test_1_labels)) if i not in positive_test_labels], replace=False, size=len(positive_test_labels)))

                    # test_data = [test_data[i] for i in positive_test_labels + negative_test_labels]
                    train_data1 = [train_data[i] for i in positive_train_labels + negative_train_labels]

                    # test_1_labels = [test_1_labels[i] for i in positive_test_labels + negative_test_labels]
                    train_1_labels1 = [train_1_labels[i] for i in positive_train_labels + negative_train_labels]
                    model.fit(train_data1, train_1_labels1)
开发者ID:kahvel,项目名称:MAProject,代码行数:33,代码来源:main.py


注:本文中的sklearn.ensemble.RandomForestClassifier.classes_方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。