当前位置: 首页>>代码示例>>Python>>正文


Python RandomForestClassifier.decision_path方法代码示例

本文整理汇总了Python中sklearn.ensemble.RandomForestClassifier.decision_path方法的典型用法代码示例。如果您正苦于以下问题:Python RandomForestClassifier.decision_path方法的具体用法?Python RandomForestClassifier.decision_path怎么用?Python RandomForestClassifier.decision_path使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.RandomForestClassifier的用法示例。


在下文中一共展示了RandomForestClassifier.decision_path方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_drf_classifier_backupsklearn

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import decision_path [as 别名]
def test_drf_classifier_backupsklearn(backend='auto'):
    df = pd.read_csv("./open_data/creditcard.csv")
    X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C')
    y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C')
    import h2o4gpu
    Solver = h2o4gpu.RandomForestClassifier

    #Run h2o4gpu version of RandomForest Regression
    drf = Solver(backend=backend, random_state=1234, oob_score=True)
    print("h2o4gpu fit()")
    drf.fit(X, y)

    #Run Sklearn version of RandomForest Regression
    from sklearn.ensemble import RandomForestClassifier
    drf_sk = RandomForestClassifier(random_state=1234, oob_score=True, max_depth=3)
    print("Scikit fit()")
    drf_sk.fit(X, y)

    if backend == "sklearn":
        assert (drf.predict(X) == drf_sk.predict(X)).all() == True
        assert (drf.predict_log_proba(X) == drf_sk.predict_log_proba(X)).all() == True
        assert (drf.predict_proba(X) == drf_sk.predict_proba(X)).all() == True
        assert (drf.score(X, y) == drf_sk.score(X, y)).all() == True
        assert (drf.decision_path(X)[1] == drf_sk.decision_path(X)[1]).all() == True
        assert (drf.apply(X) == drf_sk.apply(X)).all() == True

        print("Estimators")
        print(drf.estimators_)
        print(drf_sk.estimators_)

        print("n_features")
        print(drf.n_features_)
        print(drf_sk.n_features_)
        assert drf.n_features_ == drf_sk.n_features_

        print("n_classes_")
        print(drf.n_classes_)
        print(drf_sk.n_classes_)
        assert drf.n_classes_ == drf_sk.n_classes_

        print("n_features")
        print(drf.classes_)
        print(drf_sk.classes_)
        assert (drf.classes_ == drf_sk.classes_).all() == True

        print("n_outputs")
        print(drf.n_outputs_)
        print(drf_sk.n_outputs_)
        assert drf.n_outputs_ == drf_sk.n_outputs_

        print("Feature importance")
        print(drf.feature_importances_)
        print(drf_sk.feature_importances_)
        assert (drf.feature_importances_ == drf_sk.feature_importances_).all() == True

        print("oob_score")
        print(drf.oob_score_)
        print(drf_sk.oob_score_)
        assert drf.oob_score_ == drf_sk.oob_score_
开发者ID:wamsiv,项目名称:h2o4gpu,代码行数:61,代码来源:test_xgb_sklearn_wrapper.py


注:本文中的sklearn.ensemble.RandomForestClassifier.decision_path方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。