当前位置: 首页>>代码示例>>Python>>正文


Python RandomForestClassifier.evt_predict方法代码示例

本文整理汇总了Python中sklearn.ensemble.RandomForestClassifier.evt_predict方法的典型用法代码示例。如果您正苦于以下问题:Python RandomForestClassifier.evt_predict方法的具体用法?Python RandomForestClassifier.evt_predict怎么用?Python RandomForestClassifier.evt_predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.RandomForestClassifier的用法示例。


在下文中一共展示了RandomForestClassifier.evt_predict方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: runTest

# 需要导入模块: from sklearn.ensemble import RandomForestClassifier [as 别名]
# 或者: from sklearn.ensemble.RandomForestClassifier import evt_predict [as 别名]
def runTest(size, trees, features, test):
    '''for i in range(10):

        foldX_train, foldX_test, foldy_train, foldy_test = train_test_split(X,y)
    
        print("train size: " + str(foldy_train.size))
        print("test size: " + str(foldy_test.size))
    
        model = RandomForestClassifier(n_estimators = trees, max_features = features, min_samples_leaf = 5, oob_score = False)
        
        model.fit(foldX_train,foldy_train)
        for i in y_train:
            if i not in classes:
                classes.append(i)
        model.evt_predict(X_test[test])'''
    model = RandomForestClassifier(n_estimators = trees, max_features = features, min_samples_leaf = 5, oob_score = False)
    model.fit(X_train,y_train)
    fit(model, n_classes)
    global min_threshold
    global average_threshold
    global product_threshold
    classes = []
    for i in y_train:
        if i not in classes:
            classes.append(i)
    X_tests = None
    y_tests = None
    unknown = []
    for i in range(10):
        if i not in train_classes and i not in validate_classes:
            unknown.append(i)
    print train_classes
    print validate_classes
    print unknown
    print train_classes +  unknown[:test]
    for i in train_classes +  unknown[:test]:
        if X_tests == None:
            X_tests = X_test[i]
            y_tests = y_test[i]
        else:
            X_tests = np.vstack((X_tests, X_test[i]))
            y_tests = np.append(y_tests, y_test[i])
    og_score = model.score(X_tests,y_tests)
    print("random test: " + str(og_score))
    predictions, pertinence = model.evt_predict(X_tests)
    total = 0
    min_correct = 0
    average_correct = 0
    product_correct = 0
    min_out = 0
    average_out = 0
    product_out = 0
    min_inn = 0
    average_inn = 0
    product_inn = 0
    counter1 = 0
    counter2 = 0
    points_in = []
    points_out = []
    for i in range(len(predictions)):
        total += 1
        if pertinence[i][0] > min_threshold:
            if predictions[i] == y_tests[i]:
                min_correct += 1
        else:
            if y_tests[i] not in classes:
                min_correct += 1
        if pertinence[i][1] > average_threshold:
            if predictions[i] == y_tests[i]:
                average_correct += 1
        else:
            if y_tests[i] not in classes:
                average_correct += 1
        if pertinence[i][2] > product_threshold:
            if predictions[i] == y_tests[i]:
                product_correct += 1
        else:
            if y_tests[i] not in classes:
                product_correct += 1
        if y_tests[i] not in classes:
            points_out.append(i)
            min_out += pertinence[i][0]
            average_out += pertinence[i][1]
            product_out += pertinence[i][2]
            counter1 += 1
        else:
            points_in.append(i)
            min_inn += pertinence[i][0]
            average_inn += pertinence[i][1]
            product_inn += pertinence[i][2]
            counter2 += 1
    if counter2 > 0:
        min_pertinence = min_inn/ float(counter2)
        average_pertinence = average_inn/ float(counter2)
        product_pertinence = product_inn/ float(counter2)
        min_deviance = 0
        average_deviance = 0
        product_deviance = 0
        for i in points_out:
            min_deviance += (pertinence[i][0] - min_pertinence) ** 2
#.........这里部分代码省略.........
开发者ID:Ben-Steele,项目名称:Random-Forest-Testing,代码行数:103,代码来源:testRunRF.py


注:本文中的sklearn.ensemble.RandomForestClassifier.evt_predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。