当前位置: 首页>>代码示例>>Python>>正文


Python AdaBoostClassifier.staged_score方法代码示例

本文整理汇总了Python中sklearn.ensemble.AdaBoostClassifier.staged_score方法的典型用法代码示例。如果您正苦于以下问题:Python AdaBoostClassifier.staged_score方法的具体用法?Python AdaBoostClassifier.staged_score怎么用?Python AdaBoostClassifier.staged_score使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.AdaBoostClassifier的用法示例。


在下文中一共展示了AdaBoostClassifier.staged_score方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_staged_predict

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_score [as 别名]
def test_staged_predict():
    """Check staged predictions."""
    # AdaBoost classification
    for alg in ['SAMME', 'SAMME.R']:
        clf = AdaBoostClassifier(algorithm=alg, n_estimators=10)
        clf.fit(iris.data, iris.target)

        predictions = clf.predict(iris.data)
        staged_predictions = [p for p in clf.staged_predict(iris.data)]
        proba = clf.predict_proba(iris.data)
        staged_probas = [p for p in clf.staged_predict_proba(iris.data)]
        score = clf.score(iris.data, iris.target)
        staged_scores = [s for s in clf.staged_score(iris.data, iris.target)]

        assert_equal(len(staged_predictions), 10)
        assert_array_almost_equal(predictions, staged_predictions[-1])
        assert_equal(len(staged_probas), 10)
        assert_array_almost_equal(proba, staged_probas[-1])
        assert_equal(len(staged_scores), 10)
        assert_array_almost_equal(score, staged_scores[-1])

    # AdaBoost regression
    clf = AdaBoostRegressor(n_estimators=10)
    clf.fit(boston.data, boston.target)

    predictions = clf.predict(boston.data)
    staged_predictions = [p for p in clf.staged_predict(boston.data)]
    score = clf.score(boston.data, boston.target)
    staged_scores = [s for s in clf.staged_score(boston.data, boston.target)]

    assert_equal(len(staged_predictions), 10)
    assert_array_almost_equal(predictions, staged_predictions[-1])
    assert_equal(len(staged_scores), 10)
    assert_array_almost_equal(score, staged_scores[-1])
开发者ID:akobre01,项目名称:scikit-learn,代码行数:36,代码来源:test_weight_boosting.py

示例2: test_staged_predict

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_score [as 别名]
def test_staged_predict():
    # Check staged predictions.
    rng = np.random.RandomState(0)
    iris_weights = rng.randint(10, size=iris.target.shape)
    boston_weights = rng.randint(10, size=boston.target.shape)

    # AdaBoost classification
    for alg in ['SAMME', 'SAMME.R']:
        clf = AdaBoostClassifier(algorithm=alg, n_estimators=10)
        clf.fit(iris.data, iris.target, sample_weight=iris_weights)

        predictions = clf.predict(iris.data)
        staged_predictions = [p for p in clf.staged_predict(iris.data)]
        proba = clf.predict_proba(iris.data)
        staged_probas = [p for p in clf.staged_predict_proba(iris.data)]
        score = clf.score(iris.data, iris.target, sample_weight=iris_weights)
        staged_scores = [
            s for s in clf.staged_score(
                iris.data, iris.target, sample_weight=iris_weights)]

        assert_equal(len(staged_predictions), 10)
        assert_array_almost_equal(predictions, staged_predictions[-1])
        assert_equal(len(staged_probas), 10)
        assert_array_almost_equal(proba, staged_probas[-1])
        assert_equal(len(staged_scores), 10)
        assert_array_almost_equal(score, staged_scores[-1])

    # AdaBoost regression
    clf = AdaBoostRegressor(n_estimators=10, random_state=0)
    clf.fit(boston.data, boston.target, sample_weight=boston_weights)

    predictions = clf.predict(boston.data)
    staged_predictions = [p for p in clf.staged_predict(boston.data)]
    score = clf.score(boston.data, boston.target, sample_weight=boston_weights)
    staged_scores = [
        s for s in clf.staged_score(
            boston.data, boston.target, sample_weight=boston_weights)]

    assert_equal(len(staged_predictions), 10)
    assert_array_almost_equal(predictions, staged_predictions[-1])
    assert_equal(len(staged_scores), 10)
    assert_array_almost_equal(score, staged_scores[-1])
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:44,代码来源:test_weight_boosting.py

示例3: test_sparse_classification

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_score [as 别名]
def test_sparse_classification():
    # Check classification with sparse input.

    class CustomSVC(SVC):
        """SVC variant that records the nature of the training set."""

        def fit(self, X, y, sample_weight=None):
            """Modification on fit caries data type for later verification."""
            super(CustomSVC, self).fit(X, y, sample_weight=sample_weight)
            self.data_type_ = type(X)
            return self

    X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15,
                                                   n_features=5,
                                                   random_state=42)
    # Flatten y to a 1d array
    y = np.ravel(y)

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix,
                          dok_matrix]:
        X_train_sparse = sparse_format(X_train)
        X_test_sparse = sparse_format(X_test)

        # Trained on sparse format
        sparse_classifier = AdaBoostClassifier(
            base_estimator=CustomSVC(probability=True),
            random_state=1,
            algorithm="SAMME"
        ).fit(X_train_sparse, y_train)

        # Trained on dense format
        dense_classifier = AdaBoostClassifier(
            base_estimator=CustomSVC(probability=True),
            random_state=1,
            algorithm="SAMME"
        ).fit(X_train, y_train)

        # predict
        sparse_results = sparse_classifier.predict(X_test_sparse)
        dense_results = dense_classifier.predict(X_test)
        assert_array_equal(sparse_results, dense_results)

        # decision_function
        sparse_results = sparse_classifier.decision_function(X_test_sparse)
        dense_results = dense_classifier.decision_function(X_test)
        assert_array_equal(sparse_results, dense_results)

        # predict_log_proba
        sparse_results = sparse_classifier.predict_log_proba(X_test_sparse)
        dense_results = dense_classifier.predict_log_proba(X_test)
        assert_array_equal(sparse_results, dense_results)

        # predict_proba
        sparse_results = sparse_classifier.predict_proba(X_test_sparse)
        dense_results = dense_classifier.predict_proba(X_test)
        assert_array_equal(sparse_results, dense_results)

        # score
        sparse_results = sparse_classifier.score(X_test_sparse, y_test)
        dense_results = dense_classifier.score(X_test, y_test)
        assert_array_equal(sparse_results, dense_results)

        # staged_decision_function
        sparse_results = sparse_classifier.staged_decision_function(
            X_test_sparse)
        dense_results = dense_classifier.staged_decision_function(X_test)
        for sprase_res, dense_res in zip(sparse_results, dense_results):
            assert_array_equal(sprase_res, dense_res)

        # staged_predict
        sparse_results = sparse_classifier.staged_predict(X_test_sparse)
        dense_results = dense_classifier.staged_predict(X_test)
        for sprase_res, dense_res in zip(sparse_results, dense_results):
            assert_array_equal(sprase_res, dense_res)

        # staged_predict_proba
        sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse)
        dense_results = dense_classifier.staged_predict_proba(X_test)
        for sprase_res, dense_res in zip(sparse_results, dense_results):
            assert_array_equal(sprase_res, dense_res)

        # staged_score
        sparse_results = sparse_classifier.staged_score(X_test_sparse,
                                                        y_test)
        dense_results = dense_classifier.staged_score(X_test, y_test)
        for sprase_res, dense_res in zip(sparse_results, dense_results):
            assert_array_equal(sprase_res, dense_res)

        # Verify sparsity of data is maintained during training
        types = [i.data_type_ for i in sparse_classifier.estimators_]

        assert all([(t == csc_matrix or t == csr_matrix)
                   for t in types])
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:97,代码来源:test_weight_boosting.py

示例4: preprocess

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_score [as 别名]
	img = train_data[i].transpose((1, 2, 0)) * 255
	img = img.astype(np.uint8)[:, :, ::-1]
	end = 'prob'
	h, w = img.shape[:2]
	src, dst = net.blobs['data'], net.blobs[end]
	src.data[0] = preprocess(net, img)
	net.forward(end=end)
	features = dst.data[0].copy()
 
 
X = train_data
y = train_labels
X *= 255.0
mean_x = X.mean(0)
X -= mean_x

te_X= np.load('G:/EDU/_SOURCE_CODE/chainer/examples/cifar10/data/test_data.npy')
te_y = np.load('G:/EDU/_SOURCE_CODE/chainer/examples/cifar10/data/test_labels.npy')

create_weighted_db(te_X, te_y, np.ones(te_X.shape[0], dtype=np.float32), name='test')  

clf = AdaBoostClassifier(base_estimator=CNN(), algorithm='SAMME.R', n_estimators=10,
                                 random_state=0)
clf.fit(X.reshape(X.shape[0], -1), y)

for i, score in enumerate(clf.staged_score(X.reshape(X.shape[0], -1), y)):
                print(i+1, 'train score', score)

for i, score in enumerate(clf.staged_score(te_X.reshape(te_X.shape[0], -1), te_y)):
                print(i+1, 'test score', score)
开发者ID:Haboric-Hu,项目名称:NeuralNetTests,代码行数:32,代码来源:cnn_adaboost.py


注:本文中的sklearn.ensemble.AdaBoostClassifier.staged_score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。