本文整理汇总了Python中sklearn.ensemble.AdaBoostClassifier.predict方法的典型用法代码示例。如果您正苦于以下问题:Python AdaBoostClassifier.predict方法的具体用法?Python AdaBoostClassifier.predict怎么用?Python AdaBoostClassifier.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.ensemble.AdaBoostClassifier
的用法示例。
在下文中一共展示了AdaBoostClassifier.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
class Ensemble:
def __init__(self, data):
self.rf = RandomForestClassifier(n_estimators=80, n_jobs=-1, min_samples_split=45, criterion='entropy')
self.lda = LDA()
self.dec = DecisionTreeClassifier(criterion='entropy')
self.ada = AdaBoostClassifier(n_estimators=500, learning_rate=0.25)
self.make_prediction(data)
def make_prediction(self, data):
'''
Make an ensemble prediction
'''
self.rf.fit(data.features_train, data.labels_train)
self.lda.fit(data.features_train, data.labels_train)
self.dec.fit(data.features_train, data.labels_train)
self.ada.fit(data.features_train, data.labels_train)
pre_pred = []
self.pred = []
ada_pred = self.ada.predict(data.features_test)
rf_pred = self.rf.predict(data.features_test)
lda_pred = self.lda.predict(data.features_test)
dec_pred = self.dec.predict(data.features_test)
for i in range(len(rf_pred)):
pre_pred.append([ rf_pred[i], lda_pred[i], dec_pred[i], ada_pred[i] ])
for entry in pre_pred:
pred_list = sorted(entry, key=entry.count, reverse=True)
self.pred.append(pred_list[0])
示例2: test_classifiers2
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def test_classifiers2(data, ind):
from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier(n_estimators=100)
clf.fit(data[ind[:1000], :-1], data[ind[:1000], -1])
print clf.score(data[ind[1000:], :-1], data[ind[1000:], -1])
out = clf.predict(data[ind[1000:], :-1])
print(confusion_matrix(data[ind[1000:], -1], out))
from sklearn.ensemble import GradientBoostingClassifier
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0)
clf.fit(data[ind[:1000], :-1], data[ind[:1000], -1])
print clf.score(data[ind[1000:], :-1], data[ind[1000:], -1])
out = clf.predict(data[ind[1000:], :-1])
print(confusion_matrix(data[ind[1000:], -1], out))
from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10, 10), random_state=1)
clf.fit(data[ind[:1000], :-1], data[ind[:1000], -1])
print clf.score(data[ind[1000:], :-1], data[ind[1000:], -1])
out = clf.predict(data[ind[1000:], :-1])
print(confusion_matrix(data[ind[1000:], -1], out))
import xgboost as xgb
xgb_model = xgb.XGBClassifier().fit(data[ind[:1000], :-1], data[ind[:1000], -1])
out = xgb_model.predict(data[ind[1000:], :-1])
a = confusion_matrix(data[ind[1000:], -1], out)
print float(a[0, 0] + a[1, 1]) / np.sum(a)
print a
示例3: Adaboost
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def Adaboost(TrainData,TestData):
features=['Time','Season','Hour','Minute','District']
clf = AdaBoostClassifier(tree.DecisionTreeClassifier(),n_estimators=30)
size=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
for i in range(0,len(size)):
train,validation= train_test_split(TrainData, train_size=size[i])
while len(set(train['Category'])) != len(set(validation['Category'])):
train,validation= train_test_split(TrainData, train_size=size[i])
clf = clf.fit(train[features], train['Category'])
"""stop = timeit.default_timer()
print "Runnin time adaboost is ", stop-start"""
predicted=np.array(clf.predict_proba(validation[features]))
model=clf.predict(train[features])
model1=clf.predict(validation[features])
#scores = cross_val_score(clf, validation[features], validation['Category'])
#print "Scores mean is",scores.mean()
#accuracy
print "Training accuracy is", accuracy_score(train['Category'].values.tolist(),model)
print "Validation accuracy is",accuracy_score(validation['Category'].values.tolist(),model1)
print "Precision is ",precision_score(validation['Category'].values.tolist(),model1,average='macro')
print "Recall is ",recall_score(validation['Category'].values.tolist(),model1,average='macro')
print "Log loss is", log_loss(validation['Category'].values.tolist(),predicted,eps=1e-15, normalize=True, sample_weight=None)
#writing to file
"""Category_new=[]
示例4: test_staged_predict
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def test_staged_predict():
"""Check staged predictions."""
# AdaBoost classification
for alg in ['SAMME', 'SAMME.R']:
clf = AdaBoostClassifier(algorithm=alg, n_estimators=10)
clf.fit(iris.data, iris.target)
predictions = clf.predict(iris.data)
staged_predictions = [p for p in clf.staged_predict(iris.data)]
proba = clf.predict_proba(iris.data)
staged_probas = [p for p in clf.staged_predict_proba(iris.data)]
score = clf.score(iris.data, iris.target)
staged_scores = [s for s in clf.staged_score(iris.data, iris.target)]
assert_equal(len(staged_predictions), 10)
assert_array_almost_equal(predictions, staged_predictions[-1])
assert_equal(len(staged_probas), 10)
assert_array_almost_equal(proba, staged_probas[-1])
assert_equal(len(staged_scores), 10)
assert_array_almost_equal(score, staged_scores[-1])
# AdaBoost regression
clf = AdaBoostRegressor(n_estimators=10)
clf.fit(boston.data, boston.target)
predictions = clf.predict(boston.data)
staged_predictions = [p for p in clf.staged_predict(boston.data)]
score = clf.score(boston.data, boston.target)
staged_scores = [s for s in clf.staged_score(boston.data, boston.target)]
assert_equal(len(staged_predictions), 10)
assert_array_almost_equal(predictions, staged_predictions[-1])
assert_equal(len(staged_scores), 10)
assert_array_almost_equal(score, staged_scores[-1])
示例5: Model_Adaboost
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
class Model_Adaboost(object):
def __init__(self,model,parameter = {"n_estimators" : 50, "CV_size": 0}):
self.train = model.train
self.test = model.test
self.CVsize = float(parameter["CV_size"].get())
train = np.array(self.train)
self.X_train = train[:, :-1]
self.y_train = train[:, -1]
self.X_train,self.X_CV,self.y_train,self.y_CV = train_test_split(self.X_train, self.y_train, test_size=self.CVsize)
if self.CVsize == 0:
self.clf = AdaBoostClassifier(n_estimators = int(parameter["n_estimators"].get()))
self.model = model
def fit(self):
self.clf.fit(self.X_train,self.y_train)
def score(self):
pre = self.clf.predict(self.X_train)
truth = self.y_train
print ("score: " + str(self.clf.score(self.X_train,truth)))
print ("f1: " + str(f1_score(truth,pre, average=None)))
print ("AUC score: " + str(roc_auc_score(truth,pre)))
def save_results(self):
pre = self.model.clf.predict(self.model.test)
df = pd.DataFrame({"predict":pre})
fileName = tkFileDialog.asksaveasfilename()
df.to_csv(fileName)
def crossValidation(self):
estimatorList = [3,5,7,10,13,15,20,25,30,50]
bestScore = [0,0] #score,n_estimator
bestF1ScoreNeg = [0,0]
bestF1ScorePos = [0,0]
#bestAUCScore = [0,0]
for e in estimatorList:
self.clf = AdaBoostClassifier(n_estimators = e)
self.clf.fit(self.X_train,self.y_train)
pre = self.clf.predict(self.X_CV)
truth = self.y_CV
score = self.clf.score(self.X_CV,truth)
if score > bestScore[0]:
bestScore[0] = score
bestScore[1] = e
f1pos = f1_score(truth,pre, average=None)[1]
if f1pos > bestF1ScorePos[0]:
bestF1ScorePos[0] = f1pos
bestF1ScorePos[1] = e
f1neg = f1_score(truth,pre, average=None)[0]
if f1neg > bestF1ScoreNeg[0]:
bestF1ScoreNeg[0] = f1neg
bestF1ScoreNeg[1] = e
print ("Adaboost:")
print ("Best [score,n_estimators] on Cross Validation set: " + str(bestScore))
print ("Best [f1(pos),n_estimators] on Cross Validation set: " + str(bestF1ScorePos))
print ("Best [f1(neg),n_estimators] on Cross Validation set" + str(bestF1ScoreNeg))
示例6: ada_boost
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def ada_boost(X,y, nf = 2, ne = 50, lr=1):
y = y.astype(float)
Xs = X.astype(float)
col_names = X.columns
Xs_t, Xs_holdout, y_t, y_holdout = train_test_split(Xs, y, train_size=.8)
Xs_t = Xs_t.set_index([range(len(Xs_t))])
Xs_holdout = Xs_holdout.set_index([range(len(Xs_holdout))])
y_t = pd.DataFrame(y_t).set_index([range(len(y_t))])
y_holdout = pd.DataFrame(y_holdout).set_index([range(len(y_holdout))])
kf = KFold(len(Xs_t), nf)
output_table = []
precisions = []
accuracies = []
F1s = []
fold_count = 1
for train_index, test_index in kf:
results = []
Xs_train, Xs_test = Xs_t.iloc[train_index,:], Xs_t.iloc[test_index,:]
y_train, y_test = y_t.iloc[train_index,:], y_t.iloc[test_index,:]
y_train = np.array(y_train)
y_test = np.array(y_test)
my_ada = AdaBoostClassifier(n_estimators=ne, learning_rate = lr)
my_ada.fit(Xs_train, y_train)
pred = my_ada.predict(Xs_test)
pred = np.array(pred)
output_table.append(' ')
output_table.append("Fold "+ str(fold_count) + ':')
output_table.append("Precision Score: "+str(precision_score(pred, y_test)))
output_table.append("Accuracy Score: "+ str(accuracy_score(pred, y_test)))
output_table.append("F1 Score: "+str(f1_score(pred, y_test)))
precisions.append(precision_score(pred, y_test))
accuracies.append(accuracy_score(pred, y_test))
F1s.append(f1_score(pred, y_test))
fold_count += 1
pred_holdout = my_ada.predict(Xs_holdout)
pred_holdout = np.array(pred_holdout)
cm = confusion_matrix(y_holdout, pred_holdout)
TN = cm[0][0]
FN = cm[0][1]
TP = cm[1][1]
FP = cm[1][0]
print "Mean Precision: ", np.mean(precisions)
print "Mean F1s: ", np.mean(F1s)
print "True Positive Rate (Sensitivity): ", TP*1./(TP+FN)#cm[1][1]*1./(cm[1][1]+cm[0][1])
print "True Negative Rate (Specificity): ", TN*1./(TN+FP)#cm[0][0]*1./(cm[0][0]+cm[1][0])
print "Precision: ", TP*1./(TP+FP), #precision_score(pred_holdout, y_holdout)
print "Accuracy: ", (TP+TN)*1./(TP+TN+FP+FN), #accuracy_score(pred_holdout, y_holdout)
indices = np.argsort(my_ada.feature_importances_)
figure = plt.figure(figsize=(10,7))
plt.barh(np.arange(len(col_names)), my_ada.feature_importances_[indices],
align='center', alpha=.5)
plt.yticks(np.arange(len(col_names)), np.array(col_names)[indices], fontsize=14)
plt.xticks(fontsize=14)
_ = plt.xlabel('Relative importance', fontsize=18)
return my_ada
示例7: AdaBoost
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def AdaBoost(xtrain, xtest, ytrain, ytest):
depth=75
model = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), n_estimators=depth)
model.fit(xtrain, ytrain)
print 'Adaboost with depth %d' %depth
print 'Test Performance'
eval(ytest, model.predict(xtest))
print 'Train Performance'
eval(ytrain, model.predict(xtrain))
示例8: eval
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def eval(ds, testNum, p, splitProportion=0.2):
#testNum=1
#splitProportion=0.2
allFeaturesF1=[]
allFeaturesRecall=[]
allFeaturesPrecision=[]
featureSelctedF1=[]
featureSelctedRecall = []
featureSelctedPrecision = []
for _ in range(testNum):
tstdata, trndata = ds.splitWithProportion( splitProportion )
X, Y = labanUtil.fromDStoXY(trndata)
X_test, Y_test = labanUtil.fromDStoXY(tstdata)
#localF1s = []
#localRecalls = []
#localPercisions = []
for y, y_test in zip(Y, Y_test):
if all(v == 0 for v in y):
continue
#clf = LinearSVC()#fit_intercept=True, C=p)
#clf.sparsify()
#clf = RandomForestClassifier()#criterion='entropy')
#clf = tree.DecisionTreeClassifier()#max_depth=p)
clf = AdaBoostClassifier()
#clf = GradientBoostingClassifier()#, learning_rate=lr)
#clf = ExtraTreesClassifier(n_estimators=p)
#svc = LinearSVC()
#selector = RFE(estimator=svc, n_features_to_select=p*19, step=0.2)
selector = SelectPercentile(chooser, percentile=p)
selector.fit(X, y)
name = str(clf).split()[0].split('(')[0]
clf.fit(selector.transform(X), y)
pred = clf.predict(selector.transform(X_test))
featureSelctedF1.append(metrics.f1_score(y_test, pred))
featureSelctedRecall.append(metrics.recall_score(y_test, pred))
featureSelctedPrecision.append(metrics.precision_score(y_test, pred))
clf.fit(X, y)
pred = clf.predict(X_test)
allFeaturesF1.append(metrics.f1_score(y_test, pred))
allFeaturesRecall.append(metrics.recall_score(y_test, pred))
allFeaturesPrecision.append(metrics.precision_score(y_test, pred))
return np.mean(allFeaturesF1), np.mean(featureSelctedF1), \
np.mean(allFeaturesRecall), np.mean(featureSelctedRecall), \
np.mean(allFeaturesPrecision), np.mean(featureSelctedPrecision), \
name
示例9: AdaBC
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def AdaBC(train,test,train_target,test_target,weights=None, n=500, lr = 1):
abc = AdaBoostClassifier(n_estimators = n, learning_rate = lr)
abc.fit(train, train_target, sample_weight = weights)
res = abc.predict(train)
print '*************************** AdaBC ****************'
print classification_report(train_target,res)
res1 = abc.predict(test)
print classification_report(test_target,res1)
return abc
示例10: test_adaboost_classifier
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def test_adaboost_classifier(train_test_sets):
""" Adaboost Classifier with Decision Tree Stumps. """
X_train, X_test, y_train, y_test = train_test_sets
clf = AdaBoostClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_train)
print "ADABOOST CLASSIFIER RESULTS"
print "\tTraining accuracy is ", metrics.accuracy_score(y_train, y_pred, normalize=True)
y_pred = clf.predict(X_test)
print_metrics(y_test, y_pred)
示例11: perform_emsamble_model
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def perform_emsamble_model():
#get data from csv file
x , y_votes, y_comments, y_views, lat = read_train_data()
#transform to nunpy data type array for better usage
y_votes = np.array(y_votes)
y_comments = np.array(y_comments)
y_views = np.array(y_views)
#get test data
x_test, ids, lat = read_test_data()
#Change the parameters from the objects with the values from gridsearch
vec_votes = CountVectorizer(stop_words=None, strip_accents='unicode',analyzer='word',ngram_range=(1, 2), min_df=2)
vec_comments = CountVectorizer(stop_words=None, strip_accents='unicode',analyzer='word',ngram_range=(1, 2), min_df=2)
vec_views = CountVectorizer(stop_words=None, strip_accents='unicode',analyzer='word',ngram_range=(1, 2), min_df=2)
#transfor x and x_test in a TFIDF matrix for feeding to the classifier
x_votes = vec_votes.fit_transform(x)
x_comments = vec_comments.fit_transform(x)
x_views = vec_views.fit_transform(x)
x_test_transformed_votes = vec_votes.transform(x_test)
x_test_transformed_comments = vec_comments.transform(x_test)
x_test_transformed_views = vec_views.transform(x_test)
print "TFIDF Matrixes generated"
print " LSA transforming"
lsa_votes = TruncatedSVD(500)
lsa_comments = TruncatedSVD(500)
lsa_views = TruncatedSVD(500)
x_votes = lsa_votes.fit_transform(x_votes)
print "LSA Votes Done.."
print
x_comments = lsa_comments.fit_transform(x_comments)
print "LSA Comments Done.."
print
x_views = lsa_views.fit_transform(x_views)
print "LSA Views Done.."
print
x_test_transformed_votes = lsa_votes.transform(x_test_transformed_votes)
x_test_transformed_comments = lsa_comments.transform(x_test_transformed_comments)
x_test_transformed_views = lsa_views.transform(x_test_transformed_views)
print "SLA Finished.."
ada_votes = AdaBoostClassifier(base_estimator=RandomForestClassifier())
ada_comments = AdaBoostClassifier(base_estimator=RandomForestClassifier())
ada_views = AdaBoostClassifier(base_estimator=RandomForestClassifier())
ada_votes.fit(x_votes, y_votes)
ada_comments.fit(x_comments, y_comments)
ada_views.fit(x_views, y_views)
print "Fitting done"
print
#predict number of votes
pred_votes = ada_votes.predict(x_test_transformed_votes)
pred_comments = ada_comments.predict(x_test_transformed_comments)
pred_views = ada_views.predict(x_test_transformed_views)
#generate submission response csv file
create_csv_response(len(x_test), ids, pred_views, pred_votes, pred_comments)
示例12: AdaBoost
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def AdaBoost(X, Y, XTest, YTest):
print '-----------------------------------------------------'
# param_grid = {'learning_rate': [0.1, 0.3, 0.6, 1, 3, 6, 10]}
# tree_grid = GridSearchCV(AdaBoostClassifier(), param_grid)
tree_grid = AdaBoostClassifier(n_estimators=100, learning_rate=2)
tree_grid.fit(X, Y)
# print("The best parameters are %s with a score of %0.2f"
# % (tree_grid.best_params_, tree_grid.best_score_))
print "Computing training statistics"
dtree_predict_time_training = time.time()
Ypred_dtree_training = tree_grid.predict(X)
dtree_predict_time_training = time.time() - dtree_predict_time_training
dtree_accuracy_training = metrics.accuracy_score(Y, Ypred_dtree_training)
dt_precision_training = metrics.precision_score(Y, Ypred_dtree_training,
average='binary')
dtree_recall_training = metrics.recall_score(Y, Ypred_dtree_training,
average='binary')
print "DT training prediction time: " + str(dtree_predict_time_training)
print "DT training accuracy Score: " + str(dtree_accuracy_training)
print "DT training precision Score: " + str(dt_precision_training)
print "DT training recall Score: " + str(dtree_recall_training)
print "Computing testing statistics"
dtree_predict_time_test = time.time()
Ypred_dtree_test = tree_grid.predict(XTest)
dtree_predict_time_test = time.time() - dtree_predict_time_test
dtree_accuracy_test = metrics.accuracy_score(YTest, Ypred_dtree_test)
dt_precision_test = metrics.precision_score(YTest, Ypred_dtree_test,
average='binary')
dtree_recall_test = metrics.recall_score(YTest, Ypred_dtree_test,
average='binary')
print "DT test prediction time: " + str(dtree_predict_time_test)
print "DT test accuracy Score: " + str(dtree_accuracy_test)
print "DT test precision Score: " + str(dt_precision_test)
print "DT test recall Score: " + str(dtree_recall_test)
print "Creating ROC curve"
y_true = YTest
y_score = tree_grid.predict_proba(XTest)
fprSVM, trpSVM, _ = metrics.roc_curve(y_true=y_true,
y_score=y_score[:, 0],
pos_label=0)
plt.plot(fprSVM, trpSVM, 'c-', label='ADA')
示例13: Bootstrap_method
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def Bootstrap_method(self):
rs = cross_validation.ShuffleSplit(
len(self.FeatureSet), 10, 0.25, random_state=0)
clf = tree.DecisionTreeClassifier()
for train_index, test_index in rs:
X_train = []
X_test = []
y_train = []
y_test = []
for trainid in train_index.tolist():
X_train.append(self.FeatureSet[trainid])
y_train.append(self.Label[trainid])
for testid in test_index.tolist():
X_test.append(self.FeatureSet[testid])
y_test.append(self.Label[testid])
#clf = clf.fit(X_train, y_train)
# pre_labels = clf.predict(X_test)
clf = AdaBoostClassifier(n_estimators=100)
clf = clf.fit(X_train, y_train)
pre_labels = clf.predict(X_test)
# Modeal Evaluation
ACC = metrics.accuracy_score(y_test, pre_labels)
MCC = metrics.matthews_corrcoef(y_test, pre_labels)
SN = self.performance(y_test, pre_labels)
print ACC,SN
示例14: AdaBoostcls
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
class AdaBoostcls(object):
"""docstring for ClassName"""
def __init__(self):
self.adaboost_cls = AdaBoostClassifier()
self.prediction = None
self.train_x = None
self.train_y = None
def train_model(self, train_x, train_y):
try:
self.train_x = train_x
self.train_y = train_y
self.adaboost_cls.fit(train_x, train_y)
except:
print(traceback.format_exc())
def predict(self, test_x):
try:
self.test_x = test_x
self.prediction = self.adaboost_cls.predict(test_x)
return self.prediction
except:
print(traceback.format_exc())
def accuracy_score(self, test_y):
try:
# return r2_score(test_y, self.prediction)
return self.adaboost_cls.score(self.test_x, test_y)
except:
print(traceback.format_exc())
示例15: KFold_method
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict [as 别名]
def KFold_method(self):
kf = KFold(n_splits=10)
for train_index, test_index in kf.split(self.FeatureSet):
X_train = []
X_test = []
y_train = []
y_test = []
for trainid in train_index.tolist():
X_train.append(self.FeatureSet[trainid])
y_train.append(self.Label[trainid])
for testid in test_index.tolist():
X_test.append(self.FeatureSet[testid])
y_test.append(self.Label[testid])
#clf = tree.DecisionTreeClassifier()
#clf = clf.fit(X_train, y_train)
#pre_labels = clf.predict(X_test)
clf = AdaBoostClassifier(n_estimators=100)
clf = clf.fit(X_train, y_train)
pre_labels = clf.predict(X_test)
# Modeal Evaluation
ACC = metrics.accuracy_score(y_test, pre_labels)
MCC = metrics.matthews_corrcoef(y_test, pre_labels)
SN = self.performance(y_test, pre_labels)
print ACC, SN