当前位置: 首页>>代码示例>>Python>>正文


Python AdaBoostClassifier.get_params方法代码示例

本文整理汇总了Python中sklearn.ensemble.AdaBoostClassifier.get_params方法的典型用法代码示例。如果您正苦于以下问题:Python AdaBoostClassifier.get_params方法的具体用法?Python AdaBoostClassifier.get_params怎么用?Python AdaBoostClassifier.get_params使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.AdaBoostClassifier的用法示例。


在下文中一共展示了AdaBoostClassifier.get_params方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: cross_validation

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import get_params [as 别名]
def cross_validation(X, y):
    #fig = plt.figure()
    #ax = fig.add_subplot(111, projection='3d')
    assert(len(y) == len(X))
    # Split the dataset in two equal parts
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=42)
 
    depth = [8, 16, 32, 64]
    split = [1, 2, 4, 8, 16, 32, 64]
    best_score = 0 
    best_train_score = 0
    best_param = None
    for d in depth:
        for s in split:
            estimator = DecisionTreeClassifier(max_features='sqrt', max_depth = d, min_samples_split = s)
            model = AdaBoostClassifier(n_estimators=500, base_estimator = estimator)
            model = model.fit(X_train, y_train)
            print "Depth: %d  split: %d" % (d, s)
            print "Model trainning score:"
            score_train = model.score(X_train, y_train)
            print score_train
            #ax.scatter(d, s, score_train, c='b', marker='o')
            print "Model test score:"
            score_test = model.score(X_test, y_test)
            print score_test
            #ax.scatter(d, s, score_test, c='r', marker='^')
 
            if score_test > best_score:
                best_score = score_test
                best_train_score = score_train
                best_param = model.get_params()
    print "=================="
    print best_train_score
    print best_score
    print best_param
    return best_param
开发者ID:21zhouyun,项目名称:KaggleOCR,代码行数:38,代码来源:adaboost_util.py

示例2: __init__

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import get_params [as 别名]
class adaBoost:
    __all__=['run','plotFeatureRanking','plotScores']

    def __init__(self, foundVariables, trainingData, trainingClasses, trainingWeights, testingData, testingClasses, adaName, bkg_name):
        """Build a forest and compute the feature importances.
        
        Keyword args:
        foundVariables -- The list of the names of found variabes, can get using Sample_x.returnFoundVariables()
        trainingData -- The training data
        trainingClasses -- The training data classes
        testingData -- the testing data
        testingClasses -- the testing data classes
        adaName -- the name of the object (eg. sig+bkg_name)
        """
        self.ada = AdaBoostClassifier(DecisionTreeClassifier(compute_importances=True,max_depth=4,min_samples_split=2,min_samples_leaf=100),n_estimators=400, learning_rate=0.5, algorithm="SAMME",compute_importances=True)
        #class sklearn.tree.DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_density=0.10000000000000001, max_features=None, compute_importances=False, random_state=None)
        self.foundVariables = foundVariables
        self.trainingData = trainingData
        self.trainingClasses = trainingClasses
        self.testingData = testingData
        self.testingClasses = testingClasses
        self.trainingWeights = trainingWeights
        self.name = adaName
        self.bkg_name = bkg_name
        self.elapsed = 0.0

    def returnName(self):
        return self.name

    def run(self):
        """Run the fitting and testing."""

    #start the fitting and time it
        start = clock()
        print 'starting training on AdaBoostClassifier'
        self.ada.fit(self.trainingData, self.trainingClasses, self.trainingWeights)
        self.elapsed = clock()-start
        print 'time taken for training: ' + str(self.elapsed)
    #set up the arrays for testing/ eval
        #xtA_C = copy.deepcopy(self.testingData)
        #pred = self.ada.predict(xtA_C)
        #import createHists
        #createHists.drawSigBkgDistrib(xtA_C, pred, self.foundVariables) # draw the signal and background distributions together

    # list the importances of each variable in the bdt, get the score on the test data
        self.importancesada = self.ada.feature_importances_
        print 'importances'
        print self.importancesada
        self.score= self.ada.score(self.testingData,self.testingClasses)
        self.params = self.ada.get_params()
        self.std_mat = np.std([tree.feature_importances_ for tree in self.ada.estimators_],
                           axis=0)
        self.indicesada = np.argsort(self.importancesada)[::-1]
        self.variableNamesSorted = []
        for i in self.indicesada:
            self.variableNamesSorted.append(self.foundVariables[i])

# Print the feature ranking
        print "Feature ranking:"

        for f in xrange(12):
            print "%d. feature %d (%f)" % (f + 1, self.indicesada[f], self.importancesada[self.indicesada[f]]) + " " +self.variableNamesSorted[f]
        self.twoclass_output = self.ada.decision_function(self.testingData)
        self.twoclass_output_train = self.ada.decision_function(self.trainingData)
        self.class_proba = self.ada.predict_proba(self.testingData)[:, -1]



    def plotFeatureRanking(self):
        # We need this to run in batch because it complains about not being able to open display
        from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
        import matplotlib.pyplot as plt
        import pylab as pl

        #plot the feature ranking
        pl.figure()
        pl.title("Feature importances Ada")
        pl.bar(xrange(len(self.variableNamesSorted)), self.importancesada[self.indicesada],
               color="r", yerr=self.std_mat[self.indicesada], align="center")
        pl.xticks(xrange(12), self.variableNamesSorted)#indicesada)
        pl.xlim([-1, 12])
        pl.show()

    def plotScores(self, returnROC = False, rocInput = []):
        from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
        import matplotlib.pyplot as plt
        import pylab as pl
        from sklearn.metrics import roc_curve, auc

        plot_colors = "rb"
        plot_step = 1000.0
        class_names = "AB"
    # Plot the training points 
        pl.subplot(131)
        for i, n, c in zip(xrange(2), class_names, plot_colors):
            idx = np.where(self.trainingClasses == i)
            pl.scatter(self.trainingData[idx, 0], self.trainingData[idx, 1],
                       c=c, cmap=pl.cm.Paired,
                       label="Class %s" % n)
        pl.axis("tight")
#.........这里部分代码省略.........
开发者ID:tibristo,项目名称:mva,代码行数:103,代码来源:adaBoost.py

示例3: AdaBoostClassifier

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import get_params [as 别名]
    print "Validation set score: ERF " , clf_etree.score(X_val, y_val)

    clf_boost = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),algorithm="SAMME", n_estimators=500, random_state=74494, learning_rate=0.8) 
    clf_boost.fit(X_train, y_train)
    print "Validation set score: ABOOST " , clf_boost.score(X_val, y_val)


    #clf_gboost = GradientBoostingClassifier(n_estimators=int(reg), random_state=74494, learning_rate=0.2) 
    #clf_gboost.fit(X_train, y_train)
    #print "Validation set score:LR " , clf_gboost.score(X_val, y_val)


    print "Classifier:"
    print clf, clf.get_params()
    print clf_etree, clf_etree.get_params()
    print clf_boost, clf_boost.get_params()
    

    if(fe==1): #L1 norm based feature elimination
        clf_fe = LogisticRegression(C=1000,penalty='l1',random_state=0)
        clf_fe.fit(X_train, y_train)
        X_train = X_train[:,clf_fe.coef_.ravel()!=0]
        print "Xtrain.shape: ", X_train.shape
        X_val = X_val[:,clf_fe.coef_.ravel()!=0]

        clf2_l = svm.SVC(kernel='linear', C=reg)
        clf2_l.fit(X_train, y_train)
        print "Lasso Validation set score filtered coeff linear: " , clf2_l.score(X_val, y_val)
        clf2 = svm.SVC(kernel='rbf', C=reg, gamma=g)
        clf2.fit(X_train, y_train)
        print "Lasso Validation set score filtered coeff: " , clf2.score(X_val, y_val)
开发者ID:choudharydhruv,项目名称:dec-meg-2014,代码行数:33,代码来源:forest.py

示例4: print

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import get_params [as 别名]
    test_error = []
    train_error = []
    for train_index, test_index in skf:
       print("for iteration {}".format(i))
       X_train, X_test = X[train_index], X[test_index]
       y_train, y_test = Y[train_index], Y[test_index]
       clf = clf.fit(X_train,y_train)
        
       y_pred = clf.predict(X_test)
       test_error.append(accuracy_score(y_pred,y_test))
    

       y_pred = clf.predict(X_train)
       train_error.append(accuracy_score(y_pred,y_train))
       print(clf.get_params())
        
    


    print('Time to fit the dataset of alpha = {} is {}'.format(i,time.clock()-start))
#     y_pred = clf.predict(X)
#     train_error = mean_absolute_error(y_pred,Y)

#     y_pred = clf.predict(X_test)
    test_error = sum(test_error)/len(test_error)
    train_error = sum(train_error)/len(train_error)
    f.write('{},{},{}\n'.format(i,train_error,test_error))
    print('{},{},{}\n'.format(i,train_error,test_error))
    f.flush()
开发者ID:ayushsengupta1991,项目名称:MLProject-JobSalaryPred,代码行数:31,代码来源:adaboost.py


注:本文中的sklearn.ensemble.AdaBoostClassifier.get_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。