当前位置: 首页>>代码示例>>Python>>正文


Python AdaBoostClassifier.predict_log_proba方法代码示例

本文整理汇总了Python中sklearn.ensemble.AdaBoostClassifier.predict_log_proba方法的典型用法代码示例。如果您正苦于以下问题:Python AdaBoostClassifier.predict_log_proba方法的具体用法?Python AdaBoostClassifier.predict_log_proba怎么用?Python AdaBoostClassifier.predict_log_proba使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.AdaBoostClassifier的用法示例。


在下文中一共展示了AdaBoostClassifier.predict_log_proba方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: makeSamples

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict_log_proba [as 别名]
    testSamples = makeSamples(testFiles)

testDescriptors = []
addDescriptors(testDescriptors, testSamples)

testClusters = kmeans.predict(testDescriptors)
testCounts = lil_matrix((len(testSamples), CLUSTERS_NUMBER))
testCounts1 = lil_matrix((len(testSamples), 256))
calculteCounts(testSamples, testCounts, testCounts1, testClusters)
testCounts = csr_matrix(testCounts)
testCounts1 = csr_matrix(testCounts1)

_tfidf = tfidf.transform(testCounts)
_tfidf1 = tfidf1.transform(testCounts1)

weights = clf.predict_log_proba(_tfidf)
weights1 = clf1.predict_log_proba(_tfidf1)
predictions = []
for i in xrange(0, len(weights)):
  w = weights[i][0] - weights[i][1]
  w1 = weights1[i][0] - weights1[i][1]
  pred = w < 0
  pred1 = w1 < 0
  if pred != pred1:
    pred = w + w1 < 0
  predictions.append(pred)

match = 0
dismatch = 0
if len(testFiles) == len(predictions):
    log = open('log.txt', 'w')
开发者ID:CherkashinSergey,项目名称:KeyPointClusterization,代码行数:33,代码来源:example2.py

示例2: test_sparse_classification

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict_log_proba [as 别名]
def test_sparse_classification():
    # Check classification with sparse input.

    class CustomSVC(SVC):
        """SVC variant that records the nature of the training set."""

        def fit(self, X, y, sample_weight=None):
            """Modification on fit caries data type for later verification."""
            super(CustomSVC, self).fit(X, y, sample_weight=sample_weight)
            self.data_type_ = type(X)
            return self

    X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15,
                                                   n_features=5,
                                                   random_state=42)
    # Flatten y to a 1d array
    y = np.ravel(y)

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix,
                          dok_matrix]:
        X_train_sparse = sparse_format(X_train)
        X_test_sparse = sparse_format(X_test)

        # Trained on sparse format
        sparse_classifier = AdaBoostClassifier(
            base_estimator=CustomSVC(probability=True),
            random_state=1,
            algorithm="SAMME"
        ).fit(X_train_sparse, y_train)

        # Trained on dense format
        dense_classifier = AdaBoostClassifier(
            base_estimator=CustomSVC(probability=True),
            random_state=1,
            algorithm="SAMME"
        ).fit(X_train, y_train)

        # predict
        sparse_results = sparse_classifier.predict(X_test_sparse)
        dense_results = dense_classifier.predict(X_test)
        assert_array_equal(sparse_results, dense_results)

        # decision_function
        sparse_results = sparse_classifier.decision_function(X_test_sparse)
        dense_results = dense_classifier.decision_function(X_test)
        assert_array_equal(sparse_results, dense_results)

        # predict_log_proba
        sparse_results = sparse_classifier.predict_log_proba(X_test_sparse)
        dense_results = dense_classifier.predict_log_proba(X_test)
        assert_array_equal(sparse_results, dense_results)

        # predict_proba
        sparse_results = sparse_classifier.predict_proba(X_test_sparse)
        dense_results = dense_classifier.predict_proba(X_test)
        assert_array_equal(sparse_results, dense_results)

        # score
        sparse_results = sparse_classifier.score(X_test_sparse, y_test)
        dense_results = dense_classifier.score(X_test, y_test)
        assert_array_equal(sparse_results, dense_results)

        # staged_decision_function
        sparse_results = sparse_classifier.staged_decision_function(
            X_test_sparse)
        dense_results = dense_classifier.staged_decision_function(X_test)
        for sprase_res, dense_res in zip(sparse_results, dense_results):
            assert_array_equal(sprase_res, dense_res)

        # staged_predict
        sparse_results = sparse_classifier.staged_predict(X_test_sparse)
        dense_results = dense_classifier.staged_predict(X_test)
        for sprase_res, dense_res in zip(sparse_results, dense_results):
            assert_array_equal(sprase_res, dense_res)

        # staged_predict_proba
        sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse)
        dense_results = dense_classifier.staged_predict_proba(X_test)
        for sprase_res, dense_res in zip(sparse_results, dense_results):
            assert_array_equal(sprase_res, dense_res)

        # staged_score
        sparse_results = sparse_classifier.staged_score(X_test_sparse,
                                                        y_test)
        dense_results = dense_classifier.staged_score(X_test, y_test)
        for sprase_res, dense_res in zip(sparse_results, dense_results):
            assert_array_equal(sprase_res, dense_res)

        # Verify sparsity of data is maintained during training
        types = [i.data_type_ for i in sparse_classifier.estimators_]

        assert all([(t == csc_matrix or t == csr_matrix)
                   for t in types])
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:97,代码来源:test_weight_boosting.py

示例3: __init__

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import predict_log_proba [as 别名]
class PCR:

    def __init__(self):
        self.__clustersNumber = CLUSTERS_NUMBER
        self.__queue = Queue()
        self.__verbose = VERBOSE
        self.__useCache = USE_CACHE

        for i in range(FILE_LOAD_THREADS):
            t = Thread(target=self.__worker)
            t.daemon = True
            t.start()

        self.__kmeans = MiniBatchKMeans(
            n_clusters=self.__clustersNumber,
            random_state=CLUSTER_SEED,
            verbose=self.__verbose)
        self.__tfidf = TfidfTransformer()
        self.__tfidf1 = TfidfTransformer()

        self.__clf = AdaBoostClassifier(MultinomialNB(alpha=BAYES_ALPHA), n_estimators=ADA_BOOST_ESTIMATORS)
        self.__clf1 = AdaBoostClassifier(MultinomialNB(alpha=BAYES_ALPHA), n_estimators=ADA_BOOST_ESTIMATORS)

    def __worker(self):
        while True:
            task = self.__queue.get()
            func, args = task
            try:
                func(args)
            except Exception as e:
                print('EXCEPTION:', e)
            self.__queue.task_done()

    def train(self, positiveFiles, negativeFiles):
        cachedData = self.__loadCache()
        if cachedData is None:
            self.__log('loading positives')
            positiveSamples = self.__loadSamples(positiveFiles)
            self.__log('loading negatives')
            negativeSamples = self.__loadSamples(negativeFiles)

            totalDescriptors = []
            self.__addDescriptors(totalDescriptors, positiveSamples)
            self.__addDescriptors(totalDescriptors, negativeSamples)

            self.__kmeans.fit(totalDescriptors)
            clusters = self.__kmeans.predict(totalDescriptors)

            self.__printDistribution(clusters)
            self.__saveCache((positiveSamples, negativeSamples, self.__kmeans, clusters))
        else:
            self.__log('using cache')
            positiveSamples, negativeSamples, self.__kmeans, clusters = cachedData

        totalSamplesNumber = len(negativeSamples) + len(positiveSamples)
        counts = lil_matrix((totalSamplesNumber, self.__clustersNumber))
        counts1 = lil_matrix((totalSamplesNumber, 256))
        self.__currentSample = 0
        self.__currentDescr = 0
        self.__calculteCounts(positiveSamples, counts, counts1, clusters)
        self.__calculteCounts(negativeSamples, counts, counts1, clusters)
        counts = csr_matrix(counts)
        counts1 = csr_matrix(counts1)

        self.__log('training bayes classifier')
        tfidf = self.__tfidf.fit_transform(counts)
        tfidf1 = self.__tfidf1.fit_transform(counts1)
        classes = [True] * len(positiveSamples) + [False] * len(negativeSamples)
        self.__clf.fit(tfidf, classes)
        self.__clf1.fit(tfidf1, classes)

        self.__log('training complete')

    def predict(self, files):
        self.__log('loading files')
        samples = self.__loadSamples(files)
        totalDescriptors = []
        self.__addDescriptors(totalDescriptors, samples)
        self.__log('predicting classes')
        clusters = self.__kmeans.predict(totalDescriptors)
        counts = lil_matrix((len(samples), self.__clustersNumber))
        counts1 = lil_matrix((len(samples), 256))
        self.__currentSample = 0
        self.__currentDescr = 0
        self.__calculteCounts(samples, counts, counts1, clusters)
        counts = csr_matrix(counts)
        counts1 = csr_matrix(counts1)

        tfidf = self.__tfidf.transform(counts)
        tfidf1 = self.__tfidf1.transform(counts1)

        self.__log('classifying')

        weights = self.__clf.predict_log_proba(tfidf.toarray())
        weights1 = self.__clf1.predict_log_proba(tfidf1.toarray())
        predictions = []
        for i in range(0, len(weights)):
            w = weights[i][0] - weights[i][1]
            w1 = weights1[i][0] - weights1[i][1]

#.........这里部分代码省略.........
开发者ID:bakwc,项目名称:PornDetector,代码行数:103,代码来源:pcr.py


注:本文中的sklearn.ensemble.AdaBoostClassifier.predict_log_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。