当前位置: 首页>>代码示例>>Python>>正文


Python AdaBoostClassifier.score方法代码示例

本文整理汇总了Python中sklearn.ensemble.AdaBoostClassifier.score方法的典型用法代码示例。如果您正苦于以下问题:Python AdaBoostClassifier.score方法的具体用法?Python AdaBoostClassifier.score怎么用?Python AdaBoostClassifier.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.AdaBoostClassifier的用法示例。


在下文中一共展示了AdaBoostClassifier.score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: cook

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def cook():
    x, y, weights = load_data()
    n_components = 200
    svd = TruncatedSVD(n_components, random_state=42)
    x_unweighted = svd.fit_transform(x)
    x_weighted = svd.fit_transform(weighted(x, weights))

    for i in range(9):
        frac = 1 - (i * 0.01 + 0.01)
        print frac

        x_train, x_test, y_train, y_test = train_test_split(x_unweighted, y, test_size=frac)
        classifier = AdaBoostClassifier(n_estimators=100)
        classifier.fit(x_train, y_train)
        print "Unweighted: ", classifier.score(x_test, y_test)

        x_train, x_test, y_train, y_test = train_test_split(x_weighted, y, test_size=frac)
        classifier = AdaBoostClassifier(n_estimators=100)
        classifier.fit(x_train, y_train)
        print "Weighted: ", classifier.score(x_test, y_test)

        print '--------------------------'


    '''
开发者ID:wangchr,项目名称:eMeriL,代码行数:27,代码来源:cook.py

示例2: cvalidate

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def cvalidate():
    from sklearn import cross_validation

    trainset = np.genfromtxt(open('train.csv','r'), delimiter=',')[1:]
    X = np.array([x[1:8] for x in trainset])
    y = np.array([x[8] for x in trainset])
    #print X,y
    import math
    for i, x in enumerate(X):
        for j, xx in enumerate(x):
            if(math.isnan(xx)):
                X[i][j] = 26.6
   
    #print X[0:3]
    #print y[0:3]
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size = 0.3, random_state = 0)

    X_train, X_test = decomposition_pca(X_train, X_test)
    
    bdt = AdaBoostClassifier(base_estimator = KNeighborsClassifier(n_neighbors=20, algorithm = 'auto'), algorithm="SAMME", n_estimators = 200)
    bdt.fit(X_train, y_train)
    
    

    print bdt.score(X_test, y_test)
开发者ID:kingr13,项目名称:entire-src,代码行数:27,代码来源:adaboost.py

示例3: __init__

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
class AdaBoost:
    def __init__(self, data, n_estimators=50, learning_rate=1.0):
        features, weights, labels = data
        self.clf = AdaBoostClassifier(n_estimators=n_estimators, learning_rate=learning_rate)
        self.predictions, self.trnaccuracy, self.tstaccuracy = None, None, None
        self.dataset = split_dataset(features, weights, labels)

    def train(self):
        """
        Train Ada Boost on the higgs dataset
        """
        self.clf = self.clf.fit(self.dataset['training']['features'], self.dataset['training']['labels'])

    def predict(self):
        """
        Predict label using Ada Boost
        :return:
        """
        self.predictions = self.clf.predict(self.dataset['test']['features'])

    def evaluate(self):
        self.trnaccuracy = self.clf.score(self.dataset['training']['features'],
                                          self.dataset['training']['labels'],
                                          sample_weight=self.dataset['training']['weights'])
        self.tstaccuracy = self.clf.score(self.dataset['test']['features'],
                                          self.dataset['test']['labels'],
                                          sample_weight=self.dataset['test']['weights'])
开发者ID:babineaum,项目名称:bag-of-algorithms,代码行数:29,代码来源:adaboost.py

示例4: test_staged_predict

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def test_staged_predict():
    """Check staged predictions."""
    # AdaBoost classification
    for alg in ['SAMME', 'SAMME.R']:
        clf = AdaBoostClassifier(algorithm=alg, n_estimators=10)
        clf.fit(iris.data, iris.target)

        predictions = clf.predict(iris.data)
        staged_predictions = [p for p in clf.staged_predict(iris.data)]
        proba = clf.predict_proba(iris.data)
        staged_probas = [p for p in clf.staged_predict_proba(iris.data)]
        score = clf.score(iris.data, iris.target)
        staged_scores = [s for s in clf.staged_score(iris.data, iris.target)]

        assert_equal(len(staged_predictions), 10)
        assert_array_almost_equal(predictions, staged_predictions[-1])
        assert_equal(len(staged_probas), 10)
        assert_array_almost_equal(proba, staged_probas[-1])
        assert_equal(len(staged_scores), 10)
        assert_array_almost_equal(score, staged_scores[-1])

    # AdaBoost regression
    clf = AdaBoostRegressor(n_estimators=10)
    clf.fit(boston.data, boston.target)

    predictions = clf.predict(boston.data)
    staged_predictions = [p for p in clf.staged_predict(boston.data)]
    score = clf.score(boston.data, boston.target)
    staged_scores = [s for s in clf.staged_score(boston.data, boston.target)]

    assert_equal(len(staged_predictions), 10)
    assert_array_almost_equal(predictions, staged_predictions[-1])
    assert_equal(len(staged_scores), 10)
    assert_array_almost_equal(score, staged_scores[-1])
开发者ID:akobre01,项目名称:scikit-learn,代码行数:36,代码来源:test_weight_boosting.py

示例5: test_pickle

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def test_pickle():
    # Check pickability.
    import pickle

    # Adaboost classifier
    for alg in ['SAMME', 'SAMME.R']:
        obj = AdaBoostClassifier(algorithm=alg)
        obj.fit(iris.data, iris.target)
        score = obj.score(iris.data, iris.target)
        s = pickle.dumps(obj)

        obj2 = pickle.loads(s)
        assert_equal(type(obj2), obj.__class__)
        score2 = obj2.score(iris.data, iris.target)
        assert_equal(score, score2)

    # Adaboost regressor
    obj = AdaBoostRegressor(random_state=0)
    obj.fit(boston.data, boston.target)
    score = obj.score(boston.data, boston.target)
    s = pickle.dumps(obj)

    obj2 = pickle.loads(s)
    assert_equal(type(obj2), obj.__class__)
    score2 = obj2.score(boston.data, boston.target)
    assert_equal(score, score2)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:28,代码来源:test_weight_boosting.py

示例6: Model_Adaboost

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
class Model_Adaboost(object):
    def __init__(self,model,parameter = {"n_estimators" : 50, "CV_size": 0}):
        self.train = model.train
        self.test = model.test
        self.CVsize = float(parameter["CV_size"].get())
        train = np.array(self.train)
        self.X_train = train[:, :-1]
        self.y_train = train[:, -1]
        self.X_train,self.X_CV,self.y_train,self.y_CV = train_test_split(self.X_train, self.y_train, test_size=self.CVsize)
        if self.CVsize == 0:
            self.clf = AdaBoostClassifier(n_estimators = int(parameter["n_estimators"].get()))
        self.model = model

    def fit(self):
        self.clf.fit(self.X_train,self.y_train)

    def score(self):
        pre = self.clf.predict(self.X_train)
        truth = self.y_train
        print ("score: " + str(self.clf.score(self.X_train,truth)))
        print ("f1: " + str(f1_score(truth,pre, average=None)))
        print ("AUC score: " + str(roc_auc_score(truth,pre)))

    def save_results(self):
        pre = self.model.clf.predict(self.model.test)
        df = pd.DataFrame({"predict":pre})
        fileName = tkFileDialog.asksaveasfilename()
        df.to_csv(fileName)

    def crossValidation(self):
        estimatorList = [3,5,7,10,13,15,20,25,30,50]
        bestScore = [0,0] #score,n_estimator
        bestF1ScoreNeg = [0,0]
        bestF1ScorePos = [0,0]
        #bestAUCScore = [0,0]
        for e in estimatorList:
            self.clf = AdaBoostClassifier(n_estimators = e)
            self.clf.fit(self.X_train,self.y_train)
            pre = self.clf.predict(self.X_CV)
            truth = self.y_CV
            score = self.clf.score(self.X_CV,truth)
            if score > bestScore[0]:
                bestScore[0] = score
                bestScore[1] = e

            f1pos = f1_score(truth,pre, average=None)[1]
            if f1pos > bestF1ScorePos[0]:
                bestF1ScorePos[0] = f1pos
                bestF1ScorePos[1] = e

            f1neg = f1_score(truth,pre, average=None)[0]
            if f1neg > bestF1ScoreNeg[0]:
                bestF1ScoreNeg[0] = f1neg
                bestF1ScoreNeg[1] = e

        print ("Adaboost:")
        print ("Best [score,n_estimators] on Cross Validation set: " + str(bestScore))
        print ("Best [f1(pos),n_estimators] on Cross Validation set: " + str(bestF1ScorePos))
        print ("Best [f1(neg),n_estimators] on Cross Validation set" + str(bestF1ScoreNeg))
开发者ID:cndn,项目名称:sklearn-simpleGUI,代码行数:61,代码来源:skgui.py

示例7: boost_report

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def boost_report():
  svm_train_features = list()
  svm_train_classes = list()
  svm_test_features = list()
  svm_test_classes = list()

  for record in mit_records:
    svm_train_features.append(list(record.features.values()))
    svm_train_classes.append(record.my_class)
  for record in mim_records:
    svm_test_features.append(list(record.features.values()))
    svm_test_classes.append(record.my_class)

  svm_classifier = svm.SVC(kernel="linear", C=0.1)
  svm_classifier.fit(svm_train_features, svm_train_classes)
  print("linear kernel svm accuracy: " +
        str(svm_classifier.score(svm_test_features, svm_test_classes)))

  classifier = AdaBoostClassifier(
    base_estimator=svm_classifier,
    n_estimators=100,
    algorithm='SAMME')
  classifier.fit(svm_train_features, svm_train_classes)
  print("adaboost accuracy: " +
        str(classifier.score(svm_test_features, svm_test_classes)))
开发者ID:luke-plewa,项目名称:zagreus,代码行数:27,代码来源:mimic_parser.py

示例8: test_iris

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def test_iris():
    # Check consistency on dataset iris.
    classes = np.unique(iris.target)
    clf_samme = prob_samme = None

    for alg in ['SAMME', 'SAMME.R']:
        clf = AdaBoostClassifier(algorithm=alg)
        clf.fit(iris.data, iris.target)

        assert_array_equal(classes, clf.classes_)
        proba = clf.predict_proba(iris.data)
        if alg == "SAMME":
            clf_samme = clf
            prob_samme = proba
        assert_equal(proba.shape[1], len(classes))
        assert_equal(clf.decision_function(iris.data).shape[1], len(classes))

        score = clf.score(iris.data, iris.target)
        assert score > 0.9, "Failed with algorithm %s and score = %f" % \
            (alg, score)

    # Somewhat hacky regression test: prior to
    # ae7adc880d624615a34bafdb1d75ef67051b8200,
    # predict_proba returned SAMME.R values for SAMME.
    clf_samme.algorithm = "SAMME.R"
    assert_array_less(0,
                      np.abs(clf_samme.predict_proba(iris.data) - prob_samme))
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:29,代码来源:test_weight_boosting.py

示例9: prediction

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def prediction(feat,label):
    x_train, x_test, y_train, y_test = cross_validation.train_test_split(feat, label, test_size = 0.25, random_state = 0)
    num_leaves = []
    accuracy_score = []
    auc_score = []
    # for depth in range(1,10):
    #     clf = tree.DecisionTreeClassifier(max_depth = depth)
    #     clf.fit(x_train,y_train)
    #     predictions = clf.predict(x_test)
    #     accuracy = clf.score(x_test,y_test)
    #     auc = metrics.roc_auc_score(y_test,predictions)
    #     num_leaves.append(depth)
    #     accuracy_score.append(accuracy)
    #     auc_score.append(auc)

    for depth in range(1,10):
        clf = AdaBoostClassifier(tree.DecisionTreeClassifier(max_depth = depth), n_estimators = 100)
        clf.fit(x_train,y_train)
        predictions = clf.predict(x_test)
        accuracy = clf.score(x_test,y_test)
        auc = metrics.roc_auc_score(y_test,predictions)
        num_leaves.append(depth)
        accuracy_score.append(accuracy)
        auc_score.append(auc)


    return num_leaves,accuracy_score,auc_score
开发者ID:yangeric7,项目名称:BigDataProject2016,代码行数:29,代码来源:decisionTree.py

示例10: ADA_Classifier

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def ADA_Classifier(X_train, X_cv, X_test, Y_train,Y_cv,Y_test, Actual_DS):
    print("***************Starting  AdaBoost Classifier***************")
    t0 = time()
    clf = AdaBoostClassifier(n_estimators=300)
    clf.fit(X_train, Y_train)
    preds = clf.predict(X_cv)
    score = clf.score(X_cv,Y_cv)

    print("AdaBoost Classifier - {0:.2f}%".format(100 * score))
    Summary = pd.crosstab(label_enc.inverse_transform(Y_cv), label_enc.inverse_transform(preds),
                      rownames=['actual'], colnames=['preds'])
    Summary['pct'] = (Summary.divide(Summary.sum(axis=1), axis=1)).max(axis=1)*100
    print(Summary)

    #Check with log loss function
    epsilon = 1e-15
    #ll_output = log_loss_func(Y_cv, preds, epsilon)
    preds2 = clf.predict_proba(X_cv)
    ll_output2= log_loss(Y_cv, preds2, eps=1e-15, normalize=True)
    print(ll_output2)
    print("done in %0.3fs" % (time() - t0))

    preds3 = clf.predict_proba(X_test)
    #preds4 = clf.predict_proba((Actual_DS.ix[:,'feat_1':]))
    preds4 = clf.predict_proba(Actual_DS)

    print("***************Ending AdaBoost Classifier***************")
    return pd.DataFrame(preds2) , pd.DataFrame(preds3),pd.DataFrame(preds4)
开发者ID:roshankr,项目名称:DS_Competition,代码行数:30,代码来源:Otto_Classification.py

示例11: adaboost_skin

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def adaboost_skin(X_train, y_train, X_test, y_test):
    """Learn the skin data sets with AdaBoost.

    X_*: Samples.
    y_*: labels.
    """
    print 'AdaBoost'

    min_iter = 1
    max_iter = 200
    steps = 30
    diff = (max_iter - min_iter) / steps
    iterations = [min_iter + diff * step for step in xrange(steps+1)]
    scores = []
    for T in iterations:

        clf = AdaBoostClassifier(
            base_estimator=DecisionTreeClassifier(max_depth=1),
            algorithm="SAMME",
            n_estimators=T)

        clf.fit(X_train.toarray(), y_train)
        scores.append(100 * clf.score(X_test.toarray(), y_test))

        print '\t%d Iterations: %.2f%%' % (T, scores[-1])

    return iterations, scores
开发者ID:oryband,项目名称:homework,代码行数:29,代码来源:q5.py

示例12: adaboost

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def adaboost(df,label_name,feature_names,features_len,ifeat,n_estimators=100):
    # TODO: just copied from RF, needs real code
    from sklearn.ensemble import AdaBoostClassifier
    print('---------------------------------------------------')
    print(ifeat,features_len,'Adaboost, features:',feature_names)
    df_train_Y = df[label_name]
    train_Y = df_train_Y.values.ravel()  # turn from 2D to 1D

    df_train_X = df[feature_names]
    train_X = df_train_X.values

    clf =AdaBoostClassifier(n_estimators=n_estimators)
    clf = clf.fit(train_X,train_Y)
    # output = clf.predict(train_X)
    E_in = round(1.-clf.score(train_X, train_Y),5) # 'in sample' error
    #print('\tE_in :',E_in)

    # -----
    # Kfold as estimator for 'out of sample' error
    kf=skl.cross_validation.KFold(n=len(train_X), n_folds=5)
    cv_scores=skl.cross_validation.cross_val_score(clf, train_X, y=train_Y, cv=kf)
    E_out = round(1.-np.mean(cv_scores),5)
    #print("\tE_out:",E_out)

    return E_in,E_out
开发者ID:DJCordhose,项目名称:kaggle-titanic-competition,代码行数:27,代码来源:brute_test.py

示例13: AB_results

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def AB_results(): # AdaBoostClassifier
	print "--------------AdaBoostClassifier-----------------"
	rang = [60, 80]
	
	# print "--------------With HOG-----------------"
	# ans = []
	# print "n_estimators	Accuracy"
	# for i in rang:
	# 	clf = AdaBoostClassifier(n_estimators=i)
	# 	clf.fit(X_train_hog, y_train)
	# 	mean_accuracy = clf.score(X_test_hog, y_test)
	# 	print i, "	", mean_accuracy
	# 	ans.append('('+str(i)+", "+str(mean_accuracy)+')')
	# print ans

	# plt.plot(rang, ans, linewidth=2.0)
	# plt.xlabel("n_estimators")
	# plt.ylabel("mean_accuracy")
	# plt.savefig("temp_hog.png")

	
	print "\n--------------Without HOG-----------------"
	ans = []
	print "n_estimators	Accuracy"
	for i in rang:
		clf = AdaBoostClassifier(n_estimators=i)
		clf.fit(X_train, y_train)
		mean_accuracy = clf.score(X_test, y_test)
		print i, "	", mean_accuracy
		ans.append('('+str(i)+", "+str(mean_accuracy)+')')
	print ans
	plt.plot(rang, ans, linewidth=2.0)
	plt.xlabel("n_estimators")
	plt.ylabel("mean_accuracy")
	plt.savefig("temp_plain.png")
开发者ID:vickianand,项目名称:object-classification-for-surveillance,代码行数:37,代码来源:test_classifiers.py

示例14: AdaBoostcls

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
class AdaBoostcls(object):
    """docstring for ClassName"""
    def __init__(self):
        self.adaboost_cls = AdaBoostClassifier()
        self.prediction = None
        self.train_x = None
        self.train_y = None

    def train_model(self, train_x, train_y):
        try:
            self.train_x = train_x
            self.train_y = train_y
            self.adaboost_cls.fit(train_x, train_y)
        except:
            print(traceback.format_exc())

    def predict(self, test_x):
        try:
            self.test_x = test_x
            self.prediction = self.adaboost_cls.predict(test_x)
            return self.prediction
        except:
            print(traceback.format_exc())

    def accuracy_score(self, test_y):
        try:
            # return r2_score(test_y, self.prediction)
            return self.adaboost_cls.score(self.test_x, test_y)
        except:
            print(traceback.format_exc())
开发者ID:obaid22192,项目名称:machine-learning,代码行数:32,代码来源:classifiers.py

示例15: boost_report

# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import score [as 别名]
def boost_report(test_split_size):
  scd_count = 0
  for record in records:
    if (record.my_class == "SCD"):
      scd_count += 1
  print(scd_count)

  shuffle(records)
  split = int(len(records) * (1 / test_split_size))
  print(len(records))
  train_set = records[:(len(records) - split)]
  test_set = records[split:]
  print("split:", test_split_size, "train:", len(train_set), "test:", split)

  svm_train_features = list()
  svm_train_classes = list()
  svm_test_features = list()
  svm_test_classes = list()

  for record in train_set:
    svm_train_features.append(list(record.features.values()))
    svm_train_classes.append(record.my_class)
  for record in test_set:
    svm_test_features.append(list(record.features.values()))
    svm_test_classes.append(record.my_class)

  svm_classifier = svm.SVC(kernel="linear", C=0.1)
  svm_classifier.fit(svm_train_features, svm_train_classes)
  print("linear kernel svm accuracy: " +
        str(svm_classifier.score(svm_test_features, svm_test_classes)))

  classifier = AdaBoostClassifier(
    base_estimator=svm_classifier,
    n_estimators=50,
    algorithm='SAMME'
  )
  classifier.fit(svm_train_features, svm_train_classes)
  print("adaboost accuracy: " +
        str(classifier.score(svm_test_features, svm_test_classes)))

  classifier2 = AdaBoostClassifier(
    n_estimators=50,
    algorithm='SAMME'
  )
  classifier2.fit(svm_train_features, svm_train_classes)
  print("adaboost2 accuracy: " +
        str(classifier2.score(svm_test_features, svm_test_classes)))
开发者ID:luke-plewa,项目名称:zagreus,代码行数:49,代码来源:parser.py


注:本文中的sklearn.ensemble.AdaBoostClassifier.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。