本文整理汇总了Python中sklearn.ensemble.AdaBoostClassifier.staged_predict方法的典型用法代码示例。如果您正苦于以下问题:Python AdaBoostClassifier.staged_predict方法的具体用法?Python AdaBoostClassifier.staged_predict怎么用?Python AdaBoostClassifier.staged_predict使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.ensemble.AdaBoostClassifier
的用法示例。
在下文中一共展示了AdaBoostClassifier.staged_predict方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_staged_predict
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
def test_staged_predict():
"""Check staged predictions."""
# AdaBoost classification
for alg in ['SAMME', 'SAMME.R']:
clf = AdaBoostClassifier(algorithm=alg, n_estimators=10)
clf.fit(iris.data, iris.target)
predictions = clf.predict(iris.data)
staged_predictions = [p for p in clf.staged_predict(iris.data)]
proba = clf.predict_proba(iris.data)
staged_probas = [p for p in clf.staged_predict_proba(iris.data)]
score = clf.score(iris.data, iris.target)
staged_scores = [s for s in clf.staged_score(iris.data, iris.target)]
assert_equal(len(staged_predictions), 10)
assert_array_almost_equal(predictions, staged_predictions[-1])
assert_equal(len(staged_probas), 10)
assert_array_almost_equal(proba, staged_probas[-1])
assert_equal(len(staged_scores), 10)
assert_array_almost_equal(score, staged_scores[-1])
# AdaBoost regression
clf = AdaBoostRegressor(n_estimators=10)
clf.fit(boston.data, boston.target)
predictions = clf.predict(boston.data)
staged_predictions = [p for p in clf.staged_predict(boston.data)]
score = clf.score(boston.data, boston.target)
staged_scores = [s for s in clf.staged_score(boston.data, boston.target)]
assert_equal(len(staged_predictions), 10)
assert_array_almost_equal(predictions, staged_predictions[-1])
assert_equal(len(staged_scores), 10)
assert_array_almost_equal(score, staged_scores[-1])
示例2: some
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
def some(X, Y, X_test, Y_test):
ada = AdaBoostClassifier()
print "Train Model ---"
t1 = time()
ada.fit(X, Y)
t2 = time()
print "Model Trained ----------", t2 - t1
test_errors = []
cur = 1
Y_test2 = []
for k in Y_test:
Y_test2.append(k[0])
print "Testing: "
print Y_test2
pred = ada.predict(X_test)
print pred
accu = 1. - accuracy_score(y_true= Y_test2, y_pred= pred)
print accu
print "STAGED _____________"
for test_predict in (
ada.staged_predict(X_test)):
test_errors.append(
1. - accuracy_score(test_predict, Y_test2))
print "errorss : "
print test_errors
示例3: test_staged_predict
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
def test_staged_predict():
# Check staged predictions.
rng = np.random.RandomState(0)
iris_weights = rng.randint(10, size=iris.target.shape)
boston_weights = rng.randint(10, size=boston.target.shape)
# AdaBoost classification
for alg in ['SAMME', 'SAMME.R']:
clf = AdaBoostClassifier(algorithm=alg, n_estimators=10)
clf.fit(iris.data, iris.target, sample_weight=iris_weights)
predictions = clf.predict(iris.data)
staged_predictions = [p for p in clf.staged_predict(iris.data)]
proba = clf.predict_proba(iris.data)
staged_probas = [p for p in clf.staged_predict_proba(iris.data)]
score = clf.score(iris.data, iris.target, sample_weight=iris_weights)
staged_scores = [
s for s in clf.staged_score(
iris.data, iris.target, sample_weight=iris_weights)]
assert_equal(len(staged_predictions), 10)
assert_array_almost_equal(predictions, staged_predictions[-1])
assert_equal(len(staged_probas), 10)
assert_array_almost_equal(proba, staged_probas[-1])
assert_equal(len(staged_scores), 10)
assert_array_almost_equal(score, staged_scores[-1])
# AdaBoost regression
clf = AdaBoostRegressor(n_estimators=10, random_state=0)
clf.fit(boston.data, boston.target, sample_weight=boston_weights)
predictions = clf.predict(boston.data)
staged_predictions = [p for p in clf.staged_predict(boston.data)]
score = clf.score(boston.data, boston.target, sample_weight=boston_weights)
staged_scores = [
s for s in clf.staged_score(
boston.data, boston.target, sample_weight=boston_weights)]
assert_equal(len(staged_predictions), 10)
assert_array_almost_equal(predictions, staged_predictions[-1])
assert_equal(len(staged_scores), 10)
assert_array_almost_equal(score, staged_scores[-1])
示例4: ensembleProc
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
def ensembleProc(n_estimators, learning_rate, trainfile, testfile):
features = np.genfromtxt(trainfile, delimiter=' ', usecols=(0, 1, 2))
labels = np.genfromtxt(trainfile, delimiter=' ', usecols=(-1))
tests = np.genfromtxt(testfile, delimiter=' ', usecols=(0, 1, 2))
testlabels = np.genfromtxt(testfile, delimiter=' ', usecols=(-1))
dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
dt_stump.fit(features, labels)
ada_real = AdaBoostClassifier(
base_estimator=dt_stump,
learning_rate=learning_rate,
n_estimators=n_estimators,
algorithm="SAMME")
ada_real.fit(features, labels)
error = np.zeros((n_estimators,))
for i, predict in enumerate(ada_real.staged_predict(tests)):
error[i] = zero_one_loss(predict, testlabels)
return np.mean(error)
示例5: test_sparse_classification
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
def test_sparse_classification():
# Check classification with sparse input.
class CustomSVC(SVC):
"""SVC variant that records the nature of the training set."""
def fit(self, X, y, sample_weight=None):
"""Modification on fit caries data type for later verification."""
super(CustomSVC, self).fit(X, y, sample_weight=sample_weight)
self.data_type_ = type(X)
return self
X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15,
n_features=5,
random_state=42)
# Flatten y to a 1d array
y = np.ravel(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix,
dok_matrix]:
X_train_sparse = sparse_format(X_train)
X_test_sparse = sparse_format(X_test)
# Trained on sparse format
sparse_classifier = AdaBoostClassifier(
base_estimator=CustomSVC(probability=True),
random_state=1,
algorithm="SAMME"
).fit(X_train_sparse, y_train)
# Trained on dense format
dense_classifier = AdaBoostClassifier(
base_estimator=CustomSVC(probability=True),
random_state=1,
algorithm="SAMME"
).fit(X_train, y_train)
# predict
sparse_results = sparse_classifier.predict(X_test_sparse)
dense_results = dense_classifier.predict(X_test)
assert_array_equal(sparse_results, dense_results)
# decision_function
sparse_results = sparse_classifier.decision_function(X_test_sparse)
dense_results = dense_classifier.decision_function(X_test)
assert_array_equal(sparse_results, dense_results)
# predict_log_proba
sparse_results = sparse_classifier.predict_log_proba(X_test_sparse)
dense_results = dense_classifier.predict_log_proba(X_test)
assert_array_equal(sparse_results, dense_results)
# predict_proba
sparse_results = sparse_classifier.predict_proba(X_test_sparse)
dense_results = dense_classifier.predict_proba(X_test)
assert_array_equal(sparse_results, dense_results)
# score
sparse_results = sparse_classifier.score(X_test_sparse, y_test)
dense_results = dense_classifier.score(X_test, y_test)
assert_array_equal(sparse_results, dense_results)
# staged_decision_function
sparse_results = sparse_classifier.staged_decision_function(
X_test_sparse)
dense_results = dense_classifier.staged_decision_function(X_test)
for sprase_res, dense_res in zip(sparse_results, dense_results):
assert_array_equal(sprase_res, dense_res)
# staged_predict
sparse_results = sparse_classifier.staged_predict(X_test_sparse)
dense_results = dense_classifier.staged_predict(X_test)
for sprase_res, dense_res in zip(sparse_results, dense_results):
assert_array_equal(sprase_res, dense_res)
# staged_predict_proba
sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse)
dense_results = dense_classifier.staged_predict_proba(X_test)
for sprase_res, dense_res in zip(sparse_results, dense_results):
assert_array_equal(sprase_res, dense_res)
# staged_score
sparse_results = sparse_classifier.staged_score(X_test_sparse,
y_test)
dense_results = dense_classifier.staged_score(X_test, y_test)
for sprase_res, dense_res in zip(sparse_results, dense_results):
assert_array_equal(sprase_res, dense_res)
# Verify sparsity of data is maintained during training
types = [i.data_type_ for i in sparse_classifier.estimators_]
assert all([(t == csc_matrix or t == csr_matrix)
for t in types])
示例6: print
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
print("adaboost classifier training in %.2f" % (time() - start))
# use cross-validation to estimate accuracy
# start = time()
# train_pred = cross_val_predict(ada_clf, bag_of_words, train.cuisine, cv=2)
# print("adaboost evaluation finished in %.2f" % (time() - start))
# print("Estimated accuracy using cross-validation: " , accuracy_score(train.cuisine, train_pred))
# use rest of labelled training data to check accuracy score (for plotting)
test = pd.read_json("data/train2.json")
test_words = [" ".join(item) for item in test.ingredients]
test_bag = vec.transform(test_words).toarray()
test_errors = []
for test_predict in ada_clf.staged_predict(test_bag):
test_errors.append(1.0 - accuracy_score(test_predict, test.cuisine))
plt.figure(figsize=(15, 5))
plt.plot(range(1, len(ada_clf) + 1), test_errors)
plt.ylabel("Test Error")
plt.xlabel("Number of Trees")
plt.show()
# Load in Testing Data
test = pd.read_json("data/test.json")
# Create test Bag of Words
test_words = [" ".join(item) for item in test.ingredients]
test_bag = vec.transform(test_words).toarray()
示例7: AdaBoostClassifier
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
ada_discrete = AdaBoostClassifier(
base_estimator=dt_stump,
learning_rate=learning_rate,
n_estimators=n_estimators,
algorithm="SAMME")
ada_discrete.fit(X_train, y_train)
ada_real = AdaBoostClassifier(
base_estimator=dt_stump,
learning_rate=learning_rate,
n_estimators=n_estimators,
algorithm="SAMME.R")
ada_real.fit(X_train, y_train)
ada_discrete_err = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)):
ada_discrete_err[i] = zero_one_loss(y_pred, y_test)/10.
ada_discrete_err_ave += ada_discrete_err
ada_discrete_err_train = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)):
ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train)/10.
ada_discrete_err_train_ave += ada_discrete_err_train
ada_real_err = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_real.staged_predict(X_test)):
ada_real_err[i] = zero_one_loss(y_pred, y_test)/10.
ada_real_err_ave += ada_real_err
ada_real_err_train = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_real.staged_predict(X_train)):
示例8: read_hwfile
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
#!/usr/bin/env python
if __name__ == '__main__':
from sklearn.ensemble import AdaBoostClassifier as ABC
from sklearn.tree import DecisionTreeClassifier as DTC
import numpy as np
from sklearn.metrics import accuracy_score
from final_utils import read_hwfile
# initialize data
dat, lab, nDat = read_hwfile('ml14fall_train_align.dat.hog.dat', 169)
nVal = nDat/5
nTrn = nDat-nVal
datTrn = dat[:nTrn]
labTrn = lab[:nTrn]
datVal = dat[-nVal:]
labVal = lab[-nVal:]
print "#trn = {}, #val = {}".format(nTrn, nVal)
classfier = ABC(DTC(max_depth=6, max_features=1), n_estimators=50000)
classfier.fit(datTrn, labTrn)
for i, labPre in enumerate(classfier.staged_predict(datVal)):
if i % 10 == 9:
print accuracy_score(labPre, labVal)
示例9: print
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
# Now predict the value of the digit on the second half:
predicted = classifier.predict(X_test)
r_predicted = r_classifier.predict(X_test)
print("Classification report for classifier %s:\n%s\n"
% (classifier, metrics.classification_report(y_test, predicted)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, predicted))
print("Classification report for classifier %s:\n%s\n"
% (r_classifier, metrics.classification_report(y_test, r_predicted)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, r_predicted))
n_trees = xrange(1, len(classifier) + 1)
test_errors = []
train_errors = []
for p in classifier.staged_predict(X_test):
test_errors.append(1. - accuracy_score(p, y_test))
for p in classifier.staged_predict(X_train):
train_errors.append(1. - accuracy_score(p, y_train))
test_errors_rand = []
for i in xrange(1, args.estimators + 1):
print '.',
r_classifier = RandomForestClassifier(n_estimators=i, n_jobs=args.jobs, max_depth=args.max_depth)
r_classifier.fit(X_train, y_train)
r_predicted = r_classifier.predict(X_test)
test_errors_rand.append(1. - accuracy_score(r_predicted, y_test))
print '.'
pl.subplot(1,1,1)
pl.plot(n_trees, test_errors, c='red', label='AdaBoost.%s' % args.boost)
示例10: train_test_split
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
#split into training and testing samples. test_size = proportion of data used for test
x_train, x_test, y_train, y_test = train_test_split(value_to_classify, targs_to_classify, test_size = .4)
#########################
#ADABoost Classifier
#########################
bdt_real = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2),n_estimators=600,learning_rate=1)
bdt_discrete = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2),n_estimators=600,learning_rate=1.5,algorithm="SAMME")
bdt_real.fit(x_train, y_train)
bdt_discrete.fit(x_train, y_train)
real_test_errors = []
discrete_test_errors = []
for real_test_predict, discrete_train_predict in zip(bdt_real.staged_predict(x_test), bdt_discrete.staged_predict(x_test)):
real_test_errors.append(1. - accuracy_score(real_test_predict, y_test))
discrete_test_errors.append(1. - accuracy_score(discrete_train_predict, y_test))
n_trees_discrete = len(bdt_discrete)
n_trees_real = len(bdt_real)
# Boosting might terminate early, but the following arrays are always
# n_estimators long. We crop them to the actual number of trees here:
discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete]
real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real]
discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete]
# Test on the testing data set and display the accuracies
ypred_r = bdt_real.predict(x_test)
ypred_e = bdt_discrete.predict(x_test)
示例11: getPics
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
label=label[index]
(X_train,X_test)=(data[0:30000],data[30000:])
(y_train,y_test)=(label[0:30000],label[3000:])
#X_train, X_test = getPics().trainData,getPics().testData
#y_train, y_test = getPics().trainLabel,getPics().testLabel
#print X_train.shape
#print y_train.shape
bdt_discrete = AdaBoostClassifier(
CnnModel(),
n_estimators=500,
learning_rate=0.3,
algorithm="SAMME")
bdt_discrete.fit(X_train, y_train)
discrete_test_errors = []
for discrete_train_predict in bdt_discrete.staged_predict(X_test):
discrete_test_errors.append(
1. - accuracy_score(discrete_train_predict, y_test))
n_trees_discrete = len(bdt_discrete)
discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete]
discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete]
plt.figure(figsize=(15, 5))
plt.subplot(131)
plt.plot(range(1, n_trees_discrete + 1),
discrete_test_errors, c='black')
plt.legend()
plt.ylim(0.18, 0.62)
plt.ylabel('Test Error')
示例12: results_from_examples
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
from sklearn.ensemble import AdaBoostClassifier
from read_data import read_data
def results_from_examples(ps,ls):
return [1 if p == l else 0 for p,l in zip(ps,ls)]
def error_rate(rs):
return 1.0-((1.0*sum(rs))/len(rs))
print "Sklearn"
examples,labels = read_data('Data/clean1_clean.data')
clf = AdaBoostClassifier(n_estimators=50)
a = AdaBoostClassifier.fit(clf,examples,labels)
score = a.score(examples, labels)
i = 0
print "Estimator, Ensemble error, Classifier error"
for value in AdaBoostClassifier.staged_predict(clf, examples):
rs = results_from_examples(value, labels)
#print "Estimator: " + str(i) + " Ensemble error: " + str(error_rate(rs)) + " Classifier error: " + str(clf.estimator_errors_[i])
print str(i) + "," + str(error_rate(rs)) + "," + str(clf.estimator_errors_[i])
i = i + 1
print score
示例13: bdtModel
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
#.........这里部分代码省略.........
dt = DecisionTreeClassifier(max_depth=3,
min_samples_leaf=0.05*len(X))
model = AdaBoostClassifier(dt,
algorithm='SAMME',
n_estimators=400,
learning_rate=0.5)
model.fit(X, y)
print '---------- Training/Testing info ----------'
print 'Accuracy (training): ', model.score(X, y)
print 'Null Error Rate (training): ', y.mean()
#X_test = scaler.transform(X_test)
predicted_test = model.predict(X_test)
predicted_test_clever = (predicted_test + y_test).tolist()
error_test = float(predicted_test_clever.count(1)) / float(len(predicted_test_clever))
print "Error: ", error_test
print "Accuracy (testing): ", metrics.accuracy_score(y_test, predicted_test)
print "Recall (testing): ", metrics.recall_score(y_test, predicted_test)
print "F1 score (testing): ", metrics.f1_score(y_test, predicted_test)
print "ROC area under curve (testing): ", metrics.roc_auc_score(y_test, predicted_test)
#'PTS','AST','REB','STL','BLK','FG_PCT','FG3_PCT','FT_PCT','MIN','EFF','WL']
#user_input = scaler.transform(np.array([10, 1, 2, 0, 2, 0.3, 0.3, 0.3, 10, 5, 1], dtype=float))
#user_input = scaler.transform(np.array([10,1,2,2,2,2,2,2,2,2,1], dtype=float))
#user_input = scaler.transform(np.array([10,1,2], dtype=float))
user_input = np.array([10.15, 1.95, 6.77, 1.12, 0.28, 0.51, 0.37, 0.47, 32.5, 14.8, 0.53], dtype=float)
score = model.decision_function(user_input)
print 'Score (user input): ', score
result = model.predict_proba(user_input)
print 'Probability of 1 (user input): ', result
# '--------- Visualization -----------'
Classifier_training_S = model.decision_function(X[y>0.5]).ravel()
Classifier_training_B = model.decision_function(X[y<0.5]).ravel()
Classifier_testing_S = model.decision_function(X_test[y_test>0.5]).ravel()
Classifier_testing_B = model.decision_function(X_test[y_test<0.5]).ravel()
(h_test_s, h_test_b) = visualSigBkg("BDT", Classifier_training_S, Classifier_training_B, Classifier_testing_S, Classifier_testing_B)
# '-------- Variable Importance ---------'
feature_importance = model.feature_importances_
# make importances relative to max importance
feature_importance = 100.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
mpl.style.use('ggplot')
pl.subplot(1, 2, 2)
pl.barh(pos, feature_importance[sorted_idx], align='center')
pl.yticks(pos, df_sig_train.columns[sorted_idx])
pl.xlabel('Relative Importance', fontsize=15)
pl.title('Variable Importance', fontsize=15)
#pl.show()
plt.savefig("Var_importance.pdf")
plt.close()
fig = plt.figure()
ax = fig.add_subplot(111)
model_err = np.zeros((400,))
for i, y_pred in enumerate(model.staged_predict(X_test)):
model_err[i] = zero_one_loss(y_pred, y_test)
model_err_train = np.zeros((400,))
for i, y_pred in enumerate(model.staged_predict(X)):
model_err_train[i] = zero_one_loss(y_pred, y)
ax.plot(np.arange(400) + 1, model_err,
label='AdaBoost Test Error',
color='orange')
ax.plot(np.arange(400) + 1, model_err_train,
label='AdaBoost Train Error',
color='green')
ax.set_ylim((0.25, 0.35))
ax.set_xlabel('Number of Trees')
ax.set_ylabel('Error Rate')
leg = ax.legend(loc='upper right', fancybox=True)
leg.get_frame().set_alpha(0.7)
plt.savefig("ntrees.pdf")
plt.close()
###########################################################
return (model, X, y, result, model.score(X, y), error_test, score, h_test_s, h_test_b)
示例14: PdfPages
# 需要导入模块: from sklearn.ensemble import AdaBoostClassifier [as 别名]
# 或者: from sklearn.ensemble.AdaBoostClassifier import staged_predict [as 别名]
y_train = np.append(os, zs)
print "training"
base_ada.fit(X=X_train, y=y_train)
os = np.ones(len(bkgtest))
zs = np.zeros(len(sigtest))
print "adding samples together"
X_test = pandas.concat([sigtest, bkgtest])
y_test = np.append(os, zs)
sigoutput = base_ada.decision_function(X=sigtest)
bkgoutput = base_ada.decision_function(X=bkgtest)
from sklearn.metrics import accuracy_score
test_errors = []
for te in base_ada.staged_predict(X_test):
test_errors.append(1.- accuracy_score(te, y_test))
ntrees = len(test_errors)
estimator_errors = base_ada.estimator_errors_[:ntrees]
estimator_weights = base_ada.estimator_weights_[:ntrees]
from matplotlib.ticker import LinearLocator
with PdfPages("bdtplots.pdf") as pdf:
xs, xe, ys, ye = get_hist(bkgoutput)
plt.errorbar(xs, ys, xerr=xe, yerr=ye,
color='red', fmt='.',
label='bkg')
xs, xe, ys, ye = get_hist(sigoutput)
plt.errorbar(xs, ys, xerr=xe, yerr=ye,
color='blue', fmt='.',