当前位置: 首页>>代码示例>>Python>>正文


Python Model.setMaximize方法代码示例

本文整理汇总了Python中pyscipopt.Model.setMaximize方法的典型用法代码示例。如果您正苦于以下问题:Python Model.setMaximize方法的具体用法?Python Model.setMaximize怎么用?Python Model.setMaximize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyscipopt.Model的用法示例。


在下文中一共展示了Model.setMaximize方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_model

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import setMaximize [as 别名]
def test_model():
    # create solver instance
    s = Model()

    # add some variables
    x = s.addVar("x", vtype = 'C', obj = 1.0)
    y = s.addVar("y", vtype = 'C', obj = 2.0)

    assert x.getObj() == 1.0
    assert y.getObj() == 2.0

    s.setObjective(4.0 * y + 10.5, clear = False)
    assert x.getObj() == 1.0
    assert y.getObj() == 4.0
    assert s.getObjoffset() == 10.5

    # add some constraint
    c = s.addCons(x + 2 * y >= 1.0)
    assert c.isLinear()
    s.chgLhs(c, 5.0)
    s.chgRhs(c, 6.0)

    assert s.getLhs(c) == 5.0
    assert s.getRhs(c) == 6.0

    # solve problem
    s.optimize()

    solution = s.getBestSol()

    # print solution
    assert (s.getVal(x) == s.getSolVal(solution, x))
    assert (s.getVal(y) == s.getSolVal(solution, y))
    assert round(s.getVal(x)) == 5.0
    assert round(s.getVal(y)) == 0.0
    assert s.getSlack(c, solution) == 0.0
    assert s.getSlack(c, solution, 'lhs') == 0.0
    assert s.getSlack(c, solution, 'rhs') == 1.0
    assert s.getActivity(c, solution) == 5.0

    s.writeProblem('model')
    s.writeProblem('model.lp')

    s.freeProb()
    s = Model()
    x = s.addVar("x", vtype = 'C', obj = 1.0)
    y = s.addVar("y", vtype = 'C', obj = 2.0)
    c = s.addCons(x + 2 * y <= 1.0)
    s.setMaximize()

    s.delCons(c)

    s.optimize()

    assert s.getStatus() == 'unbounded'
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:57,代码来源:test_model.py

示例2: test_knapsack

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import setMaximize [as 别名]
def test_knapsack():
    # create solver instance
    s = Model("Knapsack")
    s.hideOutput()

    # setting the objective sense to maximise
    s.setMaximize()

    # item weights
    weights = [4, 2, 6, 3, 7, 5]
    # item costs
    costs = [7, 2, 5, 4, 3, 4]

    assert len(weights) == len(costs)

    # knapsack size
    knapsackSize = 15

    # adding the knapsack variables
    knapsackVars = []
    varNames = []
    varBaseName = "Item"
    for i in range(len(weights)):
        varNames.append(varBaseName + "_" + str(i))
        knapsackVars.append(s.addVar(varNames[i], vtype='I', obj=costs[i], ub=1.0))


    # adding a linear constraint for the knapsack constraint
    coeffs = {knapsackVars[i]: weights[i] for i in range(len(weights))}
    s.addCons(coeffs, lhs=None, rhs=knapsackSize)

    # solve problem
    s.optimize()

    s.printStatistics()

    # retrieving the best solution
    solution = s.getBestSol()

    # print solution
    varSolutions = []
    for i in range(len(weights)):
        solValue = round(s.getVal(knapsackVars[i], solution))
        varSolutions.append(solValue)
        if solValue > 0:
            print (varNames[i], "Times Selected:", solValue)
            print ("\tIncluded Weight:", weights[i]*solValue, "\tItem Cost:", costs[i]*solValue)

        s.releaseVar(knapsackVars[i])

    includedWeight = sum([weights[i]*varSolutions[i] for i in range(len(weights))])
    assert includedWeight > 0 and includedWeight <= knapsackSize
开发者ID:gorhan,项目名称:LFOS,代码行数:54,代码来源:test_knapsack.py


注:本文中的pyscipopt.Model.setMaximize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。