当前位置: 首页>>代码示例>>Python>>正文


Python Model.data方法代码示例

本文整理汇总了Python中pyscipopt.Model.data方法的典型用法代码示例。如果您正苦于以下问题:Python Model.data方法的具体用法?Python Model.data怎么用?Python Model.data使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyscipopt.Model的用法示例。


在下文中一共展示了Model.data方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: mils_echelon

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def mils_echelon(T,K,P,f,g,c,d,h,a,M,UB,phi):
    """
    mils_echelon: echelon formulation for the multi-item, multi-stage lot-sizing problem

    Parameters:
        - T: number of periods
        - K: set of resources
        - P: set of items
        - f[t,p]: set-up costs (on period t, for product p)
        - g[t,p]: set-up times
        - c[t,p]: variable costs
        - d[t,p]: demand values
        - h[t,p]: holding costs
        - a[t,k,p]: amount of resource k for producing p in period t
        - M[t,k]: resource k upper bound on period t
        - UB[t,p]: upper bound of production time of product p in period t
        - phi[(i,j)]: units of i required to produce a unit of j (j parent of i)
    """
    rho = calc_rho(phi) # rho[(i,j)]: units of i required to produce a unit of j (j ancestor of i)

    model = Model("multi-stage lotsizing -- echelon formulation")

    y,x,E,H = {},{},{},{}
    Ts = range(1,T+1)
    for p in P:
        for t in Ts:
            y[t,p] = model.addVar(vtype="B", name="y(%s,%s)"%(t,p))
            x[t,p] = model.addVar(vtype="C", name="x(%s,%s)"%(t,p))
            H[t,p] = h[t,p] - sum([h[t,q]*phi[q,p] for (q,p2) in phi if p2 == p])
            E[t,p] = model.addVar(vtype="C", name="E(%s,%s)"%(t,p))        # echelon inventory
        E[0,p] = model.addVar(vtype="C", name="E(%s,%s)"%(0,p))    # echelon inventory

    for t in Ts:
        for p in P:
            # flow conservation constraints
            dsum = d[t,p] + sum([rho[p,q]*d[t,q] for (p2,q) in rho if p2 == p])
            model.addCons(E[t-1,p] + x[t,p] == E[t,p] + dsum, "FlowCons(%s,%s)"%(t,p))

            # capacity connection constraints
            model.addCons(x[t,p] <= UB[t,p]*y[t,p], "ConstrUB(%s,%s)"%(t,p))

        # time capacity constraints
        for k in K:
            model.addCons(quicksum(a[t,k,p]*x[t,p] + g[t,p]*y[t,p] for p in P) <= M[t,k],
                            "TimeUB(%s,%s)"%(t,k))


    # calculate echelon quantities
    for p in P:
        model.addCons(E[0,p] == 0, "EchelonInit(%s)"%(p))
        for t in Ts:
            model.addCons(E[t,p] >= quicksum(phi[p,q]*E[t,q] for (p2,q) in phi if p2 == p),
                            "EchelonLB(%s,%s)"%(t,p))

    model.setObjective(\
        quicksum(f[t,p]*y[t,p] + c[t,p]*x[t,p] + H[t,p]*E[t,p] for t in Ts for p in P), \
        "minimize")

    model.data = y,x,E
    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:62,代码来源:lotsizing_echelon.py

示例2: kcenter

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def kcenter(I,J,c,k):
    """kcenter -- minimize the maximum travel cost from customers to k facilities.
    Parameters:
        - I: set of customers
        - J: set of potential facilities
        - c[i,j]: cost of servicing customer i from facility j
        - k: number of facilities to be used
    Returns a model, ready to be solved.
    """

    model = Model("k-center")
    z = model.addVar(vtype="C", name="z")
    x,y = {},{}

    for j in J:
        y[j] = model.addVar(vtype="B", name="y(%s)"%j)
        for i in I:
            x[i,j] = model.addVar(vtype="B", name="x(%s,%s)"%(i,j))


    for i in I:
        model.addCons(quicksum(x[i,j] for j in J) == 1, "Assign(%s)"%i)

        for j in J:
            model.addCons(x[i,j] <= y[j], "Strong(%s,%s)"%(i,j))
            model.addCons(c[i,j]*x[i,j] <= z, "Max_x(%s,%s)"%(i,j))

    model.addCons(quicksum(y[j] for j in J) == k, "Facilities")

    model.setObjective(z, "minimize")
    model.data = x,y

    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:35,代码来源:kcenter.py

示例3: gcp

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def gcp(V,E,K):
    """gcp -- model for minimizing the number of colors in a graph
    Parameters:
        - V: set/list of nodes in the graph
        - E: set/list of edges in the graph
        - K: upper bound on the number of colors
    Returns a model, ready to be solved.
    """
    model = Model("gcp")
    x,y = {},{}
    for k in range(K):
        y[k] = model.addVar(vtype="B", name="y(%s)"%k)
        for i in V:
            x[i,k] = model.addVar(vtype="B", name="x(%s,%s)"%(i,k))

    for i in V:
        model.addCons(quicksum(x[i,k] for k in range(K)) == 1, "AssignColor(%s)"%i)

    for (i,j) in E:
        for k in range(K):
            model.addCons(x[i,k] + x[j,k] <= y[k], "NotSameColor(%s,%s,%s)"%(i,j,k))

    model.setObjective(quicksum(y[k] for k in range(K)), "minimize")

    model.data = x
    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:28,代码来源:gcp.py

示例4: prodmix

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def prodmix(I,K,a,p,epsilon,LB):
    """prodmix:  robust production planning using soco
    Parameters:
        I - set of materials
        K - set of components
        a[i][k] -  coef. matrix
        p[i] - price of material i
        LB[k] - amount needed for k
    Returns a model, ready to be solved.
    """

    model = Model("robust product mix")

    x,rhs = {},{}
    for i in I:
        x[i] = model.addVar(vtype="C", name="x(%s)"%i)
    for k in K:
        rhs[k] = model.addVar(vtype="C", name="rhs(%s)"%k)

    model.addCons(quicksum(x[i] for i in I) == 1)
    for k in K:
        model.addCons(rhs[k] == -LB[k]+ quicksum(a[i,k]*x[i] for i in I) )
        model.addCons(quicksum(epsilon*epsilon*x[i]*x[i] for i in I) <= rhs[k]*rhs[k])

    model.setObjective(quicksum(p[i]*x[i] for i in I), "minimize")

    model.data = x,rhs
    return model
开发者ID:fserra,项目名称:PySCIPOpt,代码行数:30,代码来源:prodmix_soco.py

示例5: maxflow

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def maxflow(V,M,source,sink):
    """maxflow: maximize flow from source to sink, taking into account arc capacities M
    Parameters:
        - V: set of vertices
        - M[i,j]: dictionary or capacity for arcs (i,j)
        - source: flow origin
        - sink: flow target
    Returns a model, ready to be solved.
        """
    # create max-flow underlying model, on which to find cuts
    model = Model("maxflow")
    
    f = {} # flow variable
    for (i,j) in M:
        f[i,j] = model.addVar(lb=-M[i,j], ub=M[i,j], name="flow(%s,%s)"%(i,j))

    cons = {}
    for i in V:
        if i != source and i != sink:
            cons[i] = model.addCons(
                quicksum(f[i,j] for j in V if i<j and (i,j) in M) - \
                quicksum(f[j,i] for j in V if i>j and (j,i) in M) == 0,
                "FlowCons(%s)"%i)

    model.setObjective(quicksum(f[i,j] for (i,j) in M if i==source), "maximize")

    # model.write("tmp.lp")
    model.data = f,cons
    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:31,代码来源:tsp_flow.py

示例6: markowitz

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def markowitz(I,sigma,r,alpha):
    """markowitz -- simple markowitz model for portfolio optimization.
    Parameters:
        - I: set of items
        - sigma[i]: standard deviation of item i
        - r[i]: revenue of item i
        - alpha: acceptance threshold
    Returns a model, ready to be solved.
    """
    model = Model("markowitz")

    x = {}
    for i in I:
        x[i] = model.addVar(vtype="C", name="x(%s)"%i)  # quantity of i to buy

    model.addCons(quicksum(r[i]*x[i] for i in I) >= alpha)
    model.addCons(quicksum(x[i] for i in I) == 1)

    # set nonlinear objective: SCIP only allow for linear objectives hence the following
    obj = model.addVar(vtype="C", name="objective", lb = None, ub = None)  # auxiliary variable to represent objective
    model.addCons(quicksum(sigma[i]**2 * x[i] * x[i] for i in I) <= obj)
    model.setObjective(obj, "minimize")

    model.data = x
    return model
开发者ID:mattmilten,项目名称:PySCIPOpt,代码行数:27,代码来源:markowitz_soco.py

示例7: sils

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def sils(T,f,c,d,h):
    """sils -- LP lotsizing for the single item lot sizing problem
    Parameters:
        - T: number of periods
        - P: set of products
        - f[t]: set-up costs (on period t)
        - c[t]: variable costs
        - d[t]: demand values
        - h[t]: holding costs
    Returns a model, ready to be solved.
    """
    model = Model("single item lotsizing")
    Ts = range(1,T+1)
    M = sum(d[t] for t in Ts)
    y,x,I = {},{},{}
    for t in Ts:
        y[t] = model.addVar(vtype="I", ub=1, name="y(%s)"%t)
        x[t] = model.addVar(vtype="C", ub=M, name="x(%s)"%t)
        I[t] = model.addVar(vtype="C", name="I(%s)"%t)
    I[0] = 0

    for t in Ts:
        model.addCons(x[t] <= M*y[t], "ConstrUB(%s)"%t)
        model.addCons(I[t-1] + x[t] == I[t] + d[t], "FlowCons(%s)"%t)

    model.setObjective(\
        quicksum(f[t]*y[t] + c[t]*x[t] + h[t]*I[t] for t in Ts),\
        "minimize")

    model.data = y,x,I
    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:33,代码来源:lotsizing_lazy.py

示例8: tsp

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def tsp(V,c):
    """tsp -- model for solving the traveling salesman problem with callbacks
       - start with assignment model
       - add cuts until there are no sub-cycles
    Parameters:
        - V: set/list of nodes in the graph
        - c[i,j]: cost for traversing edge (i,j)
    Returns the optimum objective value and the list of edges used.
    """
    model = Model("TSP_lazy")
    conshdlr = TSPconshdlr()

    x = {}
    for i in V:
        for j in V:
            if j > i:
                x[i,j] = model.addVar(vtype = "B",name = "x(%s,%s)" % (i,j))

    for i in V:
        model.addCons(quicksum(x[j, i] for j in V if j < i) +
                      quicksum(x[i, j] for j in V if j > i) == 2, "Degree(%s)" % i)

    model.setObjective(quicksum(c[i, j] * x[i, j] for i in V for j in V if j > i), "minimize")

    model.data = x
    return model, conshdlr
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:28,代码来源:tsp_lazy.py

示例9: eld_another

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def eld_another(U,p_min,p_max,d,brk):
    """eld -- economic load dispatching in electricity generation
    Parameters:
        - U: set of generators (units)
        - p_min[u]: minimum operating power for unit u
        - p_max[u]: maximum operating power for unit u
        - d: demand
        - brk[u][k]: (x,y) coordinates of breakpoint k, k=0,...,K for unit u
    Returns a model, ready to be solved.
    """
    model = Model("Economic load dispatching")

    # set objective based on piecewise linear approximation
    p,F,z = {},{},{}
    for u in U:
        abrk = [X for (X,Y) in brk[u]]
        bbrk = [Y for (X,Y) in brk[u]]
        p[u],F[u],z[u] = convex_comb_sos(model,abrk,bbrk)
        p[u].lb = p_min[u]
        p[u].ub = p_max[u]

    # demand satisfaction
    model.addCons(quicksum(p[u] for u in U) == d, "demand")

    # objective
    model.setObjective(quicksum(F[u] for u in U), "minimize")

    model.data = p
    return model
开发者ID:fserra,项目名称:PySCIPOpt,代码行数:31,代码来源:eld.py

示例10: p_portfolio

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def p_portfolio(I,sigma,r,alpha,beta):
    """p_portfolio -- modified markowitz model for portfolio optimization.
    Parameters:
        - I: set of items
        - sigma[i]: standard deviation of item i
        - r[i]: revenue of item i
        - alpha: acceptance threshold
        - beta: desired confidence level
    Returns a model, ready to be solved.
    """

    model = Model("p_portfolio")

    x = {}
    for i in I:
        x[i] = model.addVar(vtype="C", name="x(%s)"%i)  # quantity of i to buy
    rho = model.addVar(vtype="C", name="rho")
    rhoaux = model.addVar(vtype="C", name="rhoaux")

    model.addCons(rho == quicksum(r[i]*x[i] for i in I))
    model.addCons(quicksum(x[i] for i in I) == 1)

    model.addCons(rhoaux == (alpha - rho)*(1/phi_inv(beta))) #todo
    model.addCons(quicksum(sigma[i]**2 * x[i] * x[i] for i in I) <=  rhoaux * rhoaux)

    model.setObjective(rho, "maximize")

    model.data = x
    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:31,代码来源:portfolio_soco.py

示例11: kmedian

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def kmedian(I,J,c,k):
    """kmedian -- minimize total cost of servicing customers from k facilities
    Parameters:
        - I: set of customers
        - J: set of potential facilities
        - c[i,j]: cost of servicing customer i from facility j
        - k: number of facilities to be used
    Returns a model, ready to be solved.
    """

    model = Model("k-median")
    x,y = {},{}

    for j in J:
        y[j] = model.addVar(vtype="B", name="y(%s)"%j)
        for i in I:
            x[i,j] = model.addVar(vtype="B", name="x(%s,%s)"%(i,j))

    for i in I:
        model.addCons(quicksum(x[i,j] for j in J) == 1, "Assign(%s)"%i)
        for j in J:
            model.addCons(x[i,j] <= y[j], "Strong(%s,%s)"%(i,j))
    model.addCons(quicksum(y[j] for j in J) == k, "Facilities")

    model.setObjective(quicksum(c[i,j]*x[i,j] for i in I for j in J), "minimize")
    model.data = x,y

    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:30,代码来源:kmedian.py

示例12: gpp

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def gpp(V,E):
    """gpp -- model for the graph partitioning problem
    Parameters:
        - V: set/list of nodes in the graph
        - E: set/list of edges in the graph
    Returns a model, ready to be solved.
    """
    model = Model("gpp")

    x = {}
    y = {}
    for i in V:
        x[i] = model.addVar(vtype="B", name="x(%s)"%i)
    for (i,j) in E:
        y[i,j] = model.addVar(vtype="B", name="y(%s,%s)"%(i,j))

    model.addCons(quicksum(x[i] for i in V) == len(V)/2, "Partition")

    for (i,j) in E:
        model.addCons(x[i] - x[j] <= y[i,j], "Edge(%s,%s)"%(i,j))
        model.addCons(x[j] - x[i] <= y[i,j], "Edge(%s,%s)"%(j,i))

    model.setObjective(quicksum(y[i,j] for (i,j) in E), "minimize")

    model.data = x
    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:28,代码来源:gpp.py

示例13: eoq_soco

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def eoq_soco(I,F,h,d,w,W):
    """eoq_soco --  multi-item capacitated economic ordering quantity model using soco
    Parameters:
        - I: set of items
        - F[i]: ordering cost for item i
        - h[i]: holding cost for item i
        - d[i]: demand for item i
        - w[i]: unit weight for item i
        - W: capacity (limit on order quantity)
    Returns a model, ready to be solved.
    """
    model = Model("EOQ model using SOCO")

    T,c = {},{}
    for i in I:
        T[i] = model.addVar(vtype="C", name="T(%s)"%i)  # cycle time for item i
        c[i] = model.addVar(vtype="C", name="c(%s)"%i)  # total cost for item i

    for i in I:
        model.addCons(F[i] <= c[i]*T[i])

    model.addCons(quicksum(w[i]*d[i]*T[i] for i in I) <= W)

    model.setObjective(quicksum(c[i] + h[i]*d[i]*T[i]*0.5 for i in I), "minimize")

    model.data = T,c
    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:29,代码来源:eoq_soco.py

示例14: gcp_fixed_k

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def gcp_fixed_k(V,E,K):
    """gcp_fixed_k -- model for minimizing number of bad edges in coloring a graph
    Parameters:
        - V: set/list of nodes in the graph
        - E: set/list of edges in the graph
        - K: number of colors to be used
    Returns a model, ready to be solved.
    """
    model = Model("gcp - fixed k")

    x,z = {},{}
    for i in V:
        for k in range(K):
            x[i,k] = model.addVar(vtype="B", name="x(%s,%s)"%(i,k))
    for (i,j) in E:
        z[i,j] = model.addVar(vtype="B", name="z(%s,%s)"%(i,j))

    for i in V:
        model.addCons(quicksum(x[i,k] for k in range(K)) == 1, "AssignColor(%s)" % i)

    for (i,j) in E:
        for k in range(K):
            model.addCons(x[i,k] + x[j,k] <= 1 + z[i,j], "BadEdge(%s,%s,%s)"%(i,j,k))

    model.setObjective(quicksum(z[i,j] for (i,j) in E), "minimize")

    model.data = x,z
    return model
开发者ID:mattmilten,项目名称:PySCIPOpt,代码行数:30,代码来源:gcp_fixed_k.py

示例15: diet

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def diet(F,N,a,b,c,d):
    """diet -- model for the modern diet problem
    Parameters:
        F - set of foods
        N - set of nutrients
        a[i] - minimum intake of nutrient i
        b[i] - maximum intake of nutrient i
        c[j] - cost of food j
        d[j][i] - amount of nutrient i in food j
    Returns a model, ready to be solved.
    """
    model = Model("modern diet")

    # Create variables
    x,y,z = {},{},{}
    for j in F:
        x[j] = model.addVar(vtype="I", name="x(%s)" % j)

    for i in N:
        z[i] = model.addVar(lb=a[i], ub=b[i], vtype="C", name="z(%s)" % i)

    # Constraints:
    for i in N:
        model.addCons(quicksum(d[j][i]*x[j] for j in F) == z[i], name="Nutr(%s)" % i)

    model.setObjective(quicksum(c[j]*x[j]  for j in F), "minimize")

    model.data = x,y,z
    return model
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:31,代码来源:diet_std.py


注:本文中的pyscipopt.Model.data方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。