本文整理汇总了Python中pyscipopt.Model.data方法的典型用法代码示例。如果您正苦于以下问题:Python Model.data方法的具体用法?Python Model.data怎么用?Python Model.data使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyscipopt.Model
的用法示例。
在下文中一共展示了Model.data方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mils_echelon
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def mils_echelon(T,K,P,f,g,c,d,h,a,M,UB,phi):
"""
mils_echelon: echelon formulation for the multi-item, multi-stage lot-sizing problem
Parameters:
- T: number of periods
- K: set of resources
- P: set of items
- f[t,p]: set-up costs (on period t, for product p)
- g[t,p]: set-up times
- c[t,p]: variable costs
- d[t,p]: demand values
- h[t,p]: holding costs
- a[t,k,p]: amount of resource k for producing p in period t
- M[t,k]: resource k upper bound on period t
- UB[t,p]: upper bound of production time of product p in period t
- phi[(i,j)]: units of i required to produce a unit of j (j parent of i)
"""
rho = calc_rho(phi) # rho[(i,j)]: units of i required to produce a unit of j (j ancestor of i)
model = Model("multi-stage lotsizing -- echelon formulation")
y,x,E,H = {},{},{},{}
Ts = range(1,T+1)
for p in P:
for t in Ts:
y[t,p] = model.addVar(vtype="B", name="y(%s,%s)"%(t,p))
x[t,p] = model.addVar(vtype="C", name="x(%s,%s)"%(t,p))
H[t,p] = h[t,p] - sum([h[t,q]*phi[q,p] for (q,p2) in phi if p2 == p])
E[t,p] = model.addVar(vtype="C", name="E(%s,%s)"%(t,p)) # echelon inventory
E[0,p] = model.addVar(vtype="C", name="E(%s,%s)"%(0,p)) # echelon inventory
for t in Ts:
for p in P:
# flow conservation constraints
dsum = d[t,p] + sum([rho[p,q]*d[t,q] for (p2,q) in rho if p2 == p])
model.addCons(E[t-1,p] + x[t,p] == E[t,p] + dsum, "FlowCons(%s,%s)"%(t,p))
# capacity connection constraints
model.addCons(x[t,p] <= UB[t,p]*y[t,p], "ConstrUB(%s,%s)"%(t,p))
# time capacity constraints
for k in K:
model.addCons(quicksum(a[t,k,p]*x[t,p] + g[t,p]*y[t,p] for p in P) <= M[t,k],
"TimeUB(%s,%s)"%(t,k))
# calculate echelon quantities
for p in P:
model.addCons(E[0,p] == 0, "EchelonInit(%s)"%(p))
for t in Ts:
model.addCons(E[t,p] >= quicksum(phi[p,q]*E[t,q] for (p2,q) in phi if p2 == p),
"EchelonLB(%s,%s)"%(t,p))
model.setObjective(\
quicksum(f[t,p]*y[t,p] + c[t,p]*x[t,p] + H[t,p]*E[t,p] for t in Ts for p in P), \
"minimize")
model.data = y,x,E
return model
示例2: kcenter
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def kcenter(I,J,c,k):
"""kcenter -- minimize the maximum travel cost from customers to k facilities.
Parameters:
- I: set of customers
- J: set of potential facilities
- c[i,j]: cost of servicing customer i from facility j
- k: number of facilities to be used
Returns a model, ready to be solved.
"""
model = Model("k-center")
z = model.addVar(vtype="C", name="z")
x,y = {},{}
for j in J:
y[j] = model.addVar(vtype="B", name="y(%s)"%j)
for i in I:
x[i,j] = model.addVar(vtype="B", name="x(%s,%s)"%(i,j))
for i in I:
model.addCons(quicksum(x[i,j] for j in J) == 1, "Assign(%s)"%i)
for j in J:
model.addCons(x[i,j] <= y[j], "Strong(%s,%s)"%(i,j))
model.addCons(c[i,j]*x[i,j] <= z, "Max_x(%s,%s)"%(i,j))
model.addCons(quicksum(y[j] for j in J) == k, "Facilities")
model.setObjective(z, "minimize")
model.data = x,y
return model
示例3: gcp
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def gcp(V,E,K):
"""gcp -- model for minimizing the number of colors in a graph
Parameters:
- V: set/list of nodes in the graph
- E: set/list of edges in the graph
- K: upper bound on the number of colors
Returns a model, ready to be solved.
"""
model = Model("gcp")
x,y = {},{}
for k in range(K):
y[k] = model.addVar(vtype="B", name="y(%s)"%k)
for i in V:
x[i,k] = model.addVar(vtype="B", name="x(%s,%s)"%(i,k))
for i in V:
model.addCons(quicksum(x[i,k] for k in range(K)) == 1, "AssignColor(%s)"%i)
for (i,j) in E:
for k in range(K):
model.addCons(x[i,k] + x[j,k] <= y[k], "NotSameColor(%s,%s,%s)"%(i,j,k))
model.setObjective(quicksum(y[k] for k in range(K)), "minimize")
model.data = x
return model
示例4: prodmix
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def prodmix(I,K,a,p,epsilon,LB):
"""prodmix: robust production planning using soco
Parameters:
I - set of materials
K - set of components
a[i][k] - coef. matrix
p[i] - price of material i
LB[k] - amount needed for k
Returns a model, ready to be solved.
"""
model = Model("robust product mix")
x,rhs = {},{}
for i in I:
x[i] = model.addVar(vtype="C", name="x(%s)"%i)
for k in K:
rhs[k] = model.addVar(vtype="C", name="rhs(%s)"%k)
model.addCons(quicksum(x[i] for i in I) == 1)
for k in K:
model.addCons(rhs[k] == -LB[k]+ quicksum(a[i,k]*x[i] for i in I) )
model.addCons(quicksum(epsilon*epsilon*x[i]*x[i] for i in I) <= rhs[k]*rhs[k])
model.setObjective(quicksum(p[i]*x[i] for i in I), "minimize")
model.data = x,rhs
return model
示例5: maxflow
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def maxflow(V,M,source,sink):
"""maxflow: maximize flow from source to sink, taking into account arc capacities M
Parameters:
- V: set of vertices
- M[i,j]: dictionary or capacity for arcs (i,j)
- source: flow origin
- sink: flow target
Returns a model, ready to be solved.
"""
# create max-flow underlying model, on which to find cuts
model = Model("maxflow")
f = {} # flow variable
for (i,j) in M:
f[i,j] = model.addVar(lb=-M[i,j], ub=M[i,j], name="flow(%s,%s)"%(i,j))
cons = {}
for i in V:
if i != source and i != sink:
cons[i] = model.addCons(
quicksum(f[i,j] for j in V if i<j and (i,j) in M) - \
quicksum(f[j,i] for j in V if i>j and (j,i) in M) == 0,
"FlowCons(%s)"%i)
model.setObjective(quicksum(f[i,j] for (i,j) in M if i==source), "maximize")
# model.write("tmp.lp")
model.data = f,cons
return model
示例6: markowitz
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def markowitz(I,sigma,r,alpha):
"""markowitz -- simple markowitz model for portfolio optimization.
Parameters:
- I: set of items
- sigma[i]: standard deviation of item i
- r[i]: revenue of item i
- alpha: acceptance threshold
Returns a model, ready to be solved.
"""
model = Model("markowitz")
x = {}
for i in I:
x[i] = model.addVar(vtype="C", name="x(%s)"%i) # quantity of i to buy
model.addCons(quicksum(r[i]*x[i] for i in I) >= alpha)
model.addCons(quicksum(x[i] for i in I) == 1)
# set nonlinear objective: SCIP only allow for linear objectives hence the following
obj = model.addVar(vtype="C", name="objective", lb = None, ub = None) # auxiliary variable to represent objective
model.addCons(quicksum(sigma[i]**2 * x[i] * x[i] for i in I) <= obj)
model.setObjective(obj, "minimize")
model.data = x
return model
示例7: sils
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def sils(T,f,c,d,h):
"""sils -- LP lotsizing for the single item lot sizing problem
Parameters:
- T: number of periods
- P: set of products
- f[t]: set-up costs (on period t)
- c[t]: variable costs
- d[t]: demand values
- h[t]: holding costs
Returns a model, ready to be solved.
"""
model = Model("single item lotsizing")
Ts = range(1,T+1)
M = sum(d[t] for t in Ts)
y,x,I = {},{},{}
for t in Ts:
y[t] = model.addVar(vtype="I", ub=1, name="y(%s)"%t)
x[t] = model.addVar(vtype="C", ub=M, name="x(%s)"%t)
I[t] = model.addVar(vtype="C", name="I(%s)"%t)
I[0] = 0
for t in Ts:
model.addCons(x[t] <= M*y[t], "ConstrUB(%s)"%t)
model.addCons(I[t-1] + x[t] == I[t] + d[t], "FlowCons(%s)"%t)
model.setObjective(\
quicksum(f[t]*y[t] + c[t]*x[t] + h[t]*I[t] for t in Ts),\
"minimize")
model.data = y,x,I
return model
示例8: tsp
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def tsp(V,c):
"""tsp -- model for solving the traveling salesman problem with callbacks
- start with assignment model
- add cuts until there are no sub-cycles
Parameters:
- V: set/list of nodes in the graph
- c[i,j]: cost for traversing edge (i,j)
Returns the optimum objective value and the list of edges used.
"""
model = Model("TSP_lazy")
conshdlr = TSPconshdlr()
x = {}
for i in V:
for j in V:
if j > i:
x[i,j] = model.addVar(vtype = "B",name = "x(%s,%s)" % (i,j))
for i in V:
model.addCons(quicksum(x[j, i] for j in V if j < i) +
quicksum(x[i, j] for j in V if j > i) == 2, "Degree(%s)" % i)
model.setObjective(quicksum(c[i, j] * x[i, j] for i in V for j in V if j > i), "minimize")
model.data = x
return model, conshdlr
示例9: eld_another
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def eld_another(U,p_min,p_max,d,brk):
"""eld -- economic load dispatching in electricity generation
Parameters:
- U: set of generators (units)
- p_min[u]: minimum operating power for unit u
- p_max[u]: maximum operating power for unit u
- d: demand
- brk[u][k]: (x,y) coordinates of breakpoint k, k=0,...,K for unit u
Returns a model, ready to be solved.
"""
model = Model("Economic load dispatching")
# set objective based on piecewise linear approximation
p,F,z = {},{},{}
for u in U:
abrk = [X for (X,Y) in brk[u]]
bbrk = [Y for (X,Y) in brk[u]]
p[u],F[u],z[u] = convex_comb_sos(model,abrk,bbrk)
p[u].lb = p_min[u]
p[u].ub = p_max[u]
# demand satisfaction
model.addCons(quicksum(p[u] for u in U) == d, "demand")
# objective
model.setObjective(quicksum(F[u] for u in U), "minimize")
model.data = p
return model
示例10: p_portfolio
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def p_portfolio(I,sigma,r,alpha,beta):
"""p_portfolio -- modified markowitz model for portfolio optimization.
Parameters:
- I: set of items
- sigma[i]: standard deviation of item i
- r[i]: revenue of item i
- alpha: acceptance threshold
- beta: desired confidence level
Returns a model, ready to be solved.
"""
model = Model("p_portfolio")
x = {}
for i in I:
x[i] = model.addVar(vtype="C", name="x(%s)"%i) # quantity of i to buy
rho = model.addVar(vtype="C", name="rho")
rhoaux = model.addVar(vtype="C", name="rhoaux")
model.addCons(rho == quicksum(r[i]*x[i] for i in I))
model.addCons(quicksum(x[i] for i in I) == 1)
model.addCons(rhoaux == (alpha - rho)*(1/phi_inv(beta))) #todo
model.addCons(quicksum(sigma[i]**2 * x[i] * x[i] for i in I) <= rhoaux * rhoaux)
model.setObjective(rho, "maximize")
model.data = x
return model
示例11: kmedian
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def kmedian(I,J,c,k):
"""kmedian -- minimize total cost of servicing customers from k facilities
Parameters:
- I: set of customers
- J: set of potential facilities
- c[i,j]: cost of servicing customer i from facility j
- k: number of facilities to be used
Returns a model, ready to be solved.
"""
model = Model("k-median")
x,y = {},{}
for j in J:
y[j] = model.addVar(vtype="B", name="y(%s)"%j)
for i in I:
x[i,j] = model.addVar(vtype="B", name="x(%s,%s)"%(i,j))
for i in I:
model.addCons(quicksum(x[i,j] for j in J) == 1, "Assign(%s)"%i)
for j in J:
model.addCons(x[i,j] <= y[j], "Strong(%s,%s)"%(i,j))
model.addCons(quicksum(y[j] for j in J) == k, "Facilities")
model.setObjective(quicksum(c[i,j]*x[i,j] for i in I for j in J), "minimize")
model.data = x,y
return model
示例12: gpp
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def gpp(V,E):
"""gpp -- model for the graph partitioning problem
Parameters:
- V: set/list of nodes in the graph
- E: set/list of edges in the graph
Returns a model, ready to be solved.
"""
model = Model("gpp")
x = {}
y = {}
for i in V:
x[i] = model.addVar(vtype="B", name="x(%s)"%i)
for (i,j) in E:
y[i,j] = model.addVar(vtype="B", name="y(%s,%s)"%(i,j))
model.addCons(quicksum(x[i] for i in V) == len(V)/2, "Partition")
for (i,j) in E:
model.addCons(x[i] - x[j] <= y[i,j], "Edge(%s,%s)"%(i,j))
model.addCons(x[j] - x[i] <= y[i,j], "Edge(%s,%s)"%(j,i))
model.setObjective(quicksum(y[i,j] for (i,j) in E), "minimize")
model.data = x
return model
示例13: eoq_soco
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def eoq_soco(I,F,h,d,w,W):
"""eoq_soco -- multi-item capacitated economic ordering quantity model using soco
Parameters:
- I: set of items
- F[i]: ordering cost for item i
- h[i]: holding cost for item i
- d[i]: demand for item i
- w[i]: unit weight for item i
- W: capacity (limit on order quantity)
Returns a model, ready to be solved.
"""
model = Model("EOQ model using SOCO")
T,c = {},{}
for i in I:
T[i] = model.addVar(vtype="C", name="T(%s)"%i) # cycle time for item i
c[i] = model.addVar(vtype="C", name="c(%s)"%i) # total cost for item i
for i in I:
model.addCons(F[i] <= c[i]*T[i])
model.addCons(quicksum(w[i]*d[i]*T[i] for i in I) <= W)
model.setObjective(quicksum(c[i] + h[i]*d[i]*T[i]*0.5 for i in I), "minimize")
model.data = T,c
return model
示例14: gcp_fixed_k
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def gcp_fixed_k(V,E,K):
"""gcp_fixed_k -- model for minimizing number of bad edges in coloring a graph
Parameters:
- V: set/list of nodes in the graph
- E: set/list of edges in the graph
- K: number of colors to be used
Returns a model, ready to be solved.
"""
model = Model("gcp - fixed k")
x,z = {},{}
for i in V:
for k in range(K):
x[i,k] = model.addVar(vtype="B", name="x(%s,%s)"%(i,k))
for (i,j) in E:
z[i,j] = model.addVar(vtype="B", name="z(%s,%s)"%(i,j))
for i in V:
model.addCons(quicksum(x[i,k] for k in range(K)) == 1, "AssignColor(%s)" % i)
for (i,j) in E:
for k in range(K):
model.addCons(x[i,k] + x[j,k] <= 1 + z[i,j], "BadEdge(%s,%s,%s)"%(i,j,k))
model.setObjective(quicksum(z[i,j] for (i,j) in E), "minimize")
model.data = x,z
return model
示例15: diet
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import data [as 别名]
def diet(F,N,a,b,c,d):
"""diet -- model for the modern diet problem
Parameters:
F - set of foods
N - set of nutrients
a[i] - minimum intake of nutrient i
b[i] - maximum intake of nutrient i
c[j] - cost of food j
d[j][i] - amount of nutrient i in food j
Returns a model, ready to be solved.
"""
model = Model("modern diet")
# Create variables
x,y,z = {},{},{}
for j in F:
x[j] = model.addVar(vtype="I", name="x(%s)" % j)
for i in N:
z[i] = model.addVar(lb=a[i], ub=b[i], vtype="C", name="z(%s)" % i)
# Constraints:
for i in N:
model.addCons(quicksum(d[j][i]*x[j] for j in F) == z[i], name="Nutr(%s)" % i)
model.setObjective(quicksum(c[j]*x[j] for j in F), "minimize")
model.data = x,y,z
return model