本文整理汇总了Python中pyscipopt.Model类的典型用法代码示例。如果您正苦于以下问题:Python Model类的具体用法?Python Model怎么用?Python Model使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Model类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: gcp_fixed_k
def gcp_fixed_k(V,E,K):
"""gcp_fixed_k -- model for minimizing number of bad edges in coloring a graph
Parameters:
- V: set/list of nodes in the graph
- E: set/list of edges in the graph
- K: number of colors to be used
Returns a model, ready to be solved.
"""
model = Model("gcp - fixed k")
x,z = {},{}
for i in V:
for k in range(K):
x[i,k] = model.addVar(vtype="B", name="x(%s,%s)"%(i,k))
for (i,j) in E:
z[i,j] = model.addVar(vtype="B", name="z(%s,%s)"%(i,j))
for i in V:
model.addCons(quicksum(x[i,k] for k in range(K)) == 1, "AssignColor(%s)" % i)
for (i,j) in E:
for k in range(K):
model.addCons(x[i,k] + x[j,k] <= 1 + z[i,j], "BadEdge(%s,%s,%s)"%(i,j,k))
model.setObjective(quicksum(z[i,j] for (i,j) in E), "minimize")
model.data = x,z
return model
示例2: sils
def sils(T,f,c,d,h):
"""sils -- LP lotsizing for the single item lot sizing problem
Parameters:
- T: number of periods
- P: set of products
- f[t]: set-up costs (on period t)
- c[t]: variable costs
- d[t]: demand values
- h[t]: holding costs
Returns a model, ready to be solved.
"""
model = Model("single item lotsizing")
Ts = range(1,T+1)
M = sum(d[t] for t in Ts)
y,x,I = {},{},{}
for t in Ts:
y[t] = model.addVar(vtype="I", ub=1, name="y(%s)"%t)
x[t] = model.addVar(vtype="C", ub=M, name="x(%s)"%t)
I[t] = model.addVar(vtype="C", name="I(%s)"%t)
I[0] = 0
for t in Ts:
model.addCons(x[t] <= M*y[t], "ConstrUB(%s)"%t)
model.addCons(I[t-1] + x[t] == I[t] + d[t], "FlowCons(%s)"%t)
model.setObjective(\
quicksum(f[t]*y[t] + c[t]*x[t] + h[t]*I[t] for t in Ts),\
"minimize")
model.data = y,x,I
return model
示例3: _init
def _init():
model = Model()
model.hideOutput()
x = model.addVar("x","B")
y = model.addVar("y","B")
z = model.addVar("z","B")
return model, x, y, z
示例4: create_tsp
def create_tsp(vertices, distance):
model = Model("TSP")
x = {} # binary variable to select edges
for (i, j) in pairs(vertices):
x[i, j] = model.addVar(vtype = "B", name = "x(%s,%s)" % (i, j))
for i in vertices:
model.addCons(quicksum(x[j, i] for j in vertices if j < i) +
quicksum(x[i, j] for j in vertices if j > i) == 2, "Degree(%s)" % i)
conshdlr = TSPconshdlr(x)
model.includeConshdlr(conshdlr, "TSP", "TSP subtour eliminator",
chckpriority = -10, needscons = False)
model.setBoolParam("misc/allowdualreds", False)
model.setObjective(quicksum(distance[i, j] * x[i, j] for (i, j) in pairs(vertices)),
"minimize")
return model, x
示例5: gpp
def gpp(V,E):
"""gpp -- model for the graph partitioning problem
Parameters:
- V: set/list of nodes in the graph
- E: set/list of edges in the graph
Returns a model, ready to be solved.
"""
model = Model("gpp")
x = {}
y = {}
for i in V:
x[i] = model.addVar(vtype="B", name="x(%s)"%i)
for (i,j) in E:
y[i,j] = model.addVar(vtype="B", name="y(%s,%s)"%(i,j))
model.addCons(quicksum(x[i] for i in V) == len(V)/2, "Partition")
for (i,j) in E:
model.addCons(x[i] - x[j] <= y[i,j], "Edge(%s,%s)"%(i,j))
model.addCons(x[j] - x[i] <= y[i,j], "Edge(%s,%s)"%(j,i))
model.setObjective(quicksum(y[i,j] for (i,j) in E), "minimize")
model.data = x
return model
示例6: vrp
def vrp(V, c, m, q, Q):
"""solve_vrp -- solve the vehicle routing problem.
- start with assignment model (depot has a special status)
- add cuts until all components of the graph are connected
Parameters:
- V: set/list of nodes in the graph
- c[i,j]: cost for traversing edge (i,j)
- m: number of vehicles available
- q[i]: demand for customer i
- Q: vehicle capacity
Returns the optimum objective value and the list of edges used.
"""
model = Model("vrp")
vrp_conshdlr = VRPconshdlr()
x = {}
for i in V:
for j in V:
if j > i and i == V[0]: # depot
x[i,j] = model.addVar(ub=2, vtype="I", name="x(%s,%s)"%(i,j))
elif j > i:
x[i,j] = model.addVar(ub=1, vtype="I", name="x(%s,%s)"%(i,j))
model.addCons(quicksum(x[V[0],j] for j in V[1:]) == 2*m, "DegreeDepot")
for i in V[1:]:
model.addCons(quicksum(x[j,i] for j in V if j < i) +
quicksum(x[i,j] for j in V if j > i) == 2, "Degree(%s)"%i)
model.setObjective(quicksum(c[i,j]*x[i,j] for i in V for j in V if j>i), "minimize")
model.data = x
return model, vrp_conshdlr
示例7: test_instance
def test_instance(instance):
s = Model()
s.hideOutput()
s.readProblem(instance)
s.optimize()
name = os.path.split(instance)[1]
if name.rsplit('.',1)[1].lower() == 'gz':
name = name.rsplit('.',2)[0]
else:
name = name.rsplit('.',1)[0]
# we do not need the solution status
primalbound = s.getObjVal()
dualbound = s.getDualbound()
# get solution data from solu file
primalsolu = primalsolutions.get(name, None)
dualsolu = dualsolutions.get(name, None)
if s.getObjectiveSense() == 'minimize':
assert relGE(primalbound, dualsolu)
assert relLE(dualbound, primalsolu)
else:
if( primalsolu == infinity ): primalsolu = -infinity
if( dualsolu == infinity ): dualsolu = -infinity
assert relLE(primalbound, dualsolu)
assert relGE(dualbound, primalsolu)
示例8: gcp
def gcp(V,E,K):
"""gcp -- model for minimizing the number of colors in a graph
Parameters:
- V: set/list of nodes in the graph
- E: set/list of edges in the graph
- K: upper bound on the number of colors
Returns a model, ready to be solved.
"""
model = Model("gcp")
x,y = {},{}
for k in range(K):
y[k] = model.addVar(vtype="B", name="y(%s)"%k)
for i in V:
x[i,k] = model.addVar(vtype="B", name="x(%s,%s)"%(i,k))
for i in V:
model.addCons(quicksum(x[i,k] for k in range(K)) == 1, "AssignColor(%s)"%i)
for (i,j) in E:
for k in range(K):
model.addCons(x[i,k] + x[j,k] <= y[k], "NotSameColor(%s,%s,%s)"%(i,j,k))
model.setObjective(quicksum(y[k] for k in range(K)), "minimize")
model.data = x
return model
示例9: mctransp
def mctransp(I,J,K,c,d,M):
"""mctransp -- model for solving the Multi-commodity Transportation Problem
Parameters:
- I: set of customers
- J: set of facilities
- K: set of commodities
- c[i,j,k]: unit transportation cost on arc (i,j) for commodity k
- d[i][k]: demand for commodity k at node i
- M[j]: capacity
Returns a model, ready to be solved.
"""
model = Model("multi-commodity transportation")
# Create variables
x = {}
for (i,j,k) in c:
x[i,j,k] = model.addVar(vtype="C", name="x(%s,%s,%s)" % (i,j,k))
# Demand constraints
for i in I:
for k in K:
model.addCons(sum(x[i,j,k] for j in J if (i,j,k) in x) == d[i,k], "Demand(%s,%s)" % (i,k))
# Capacity constraints
for j in J:
model.addCons(sum(x[i,j,k] for (i,j2,k) in x if j2 == j) <= M[j], "Capacity(%s)" % j)
# Objective
model.setObjective(quicksum(c[i,j,k]*x[i,j,k] for (i,j,k) in x), "minimize")
model.data = x
return model
示例10: scheduling_time_index
def scheduling_time_index(J,p,r,w):
"""
scheduling_time_index: model for the one machine total weighted tardiness problem
Model for the one machine total weighted tardiness problem
using the time index formulation
Parameters:
- J: set of jobs
- p[j]: processing time of job j
- r[j]: earliest start time of job j
- w[j]: weighted of job j; the objective is the sum of the weighted completion time
Returns a model, ready to be solved.
"""
model = Model("scheduling: time index")
T = max(r.values()) + sum(p.values())
X = {} # X[j,t]=1 if job j starts processing at time t, 0 otherwise
for j in J:
for t in range(r[j], T-p[j]+2):
X[j,t] = model.addVar(vtype="B", name="x(%s,%s)"%(j,t))
for j in J:
model.addCons(quicksum(X[j,t] for t in range(1,T+1) if (j,t) in X) == 1, "JobExecution(%s)"%(j))
for t in range(1,T+1):
ind = [(j,t2) for j in J for t2 in range(t-p[j]+1,t+1) if (j,t2) in X]
if ind != []:
model.addCons(quicksum(X[j,t2] for (j,t2) in ind) <= 1, "MachineUB(%s)"%t)
model.setObjective(quicksum((w[j] * (t - 1 + p[j])) * X[j,t] for (j,t) in X), "minimize")
model.data = X
return model
示例11: eoq_soco
def eoq_soco(I,F,h,d,w,W):
"""eoq_soco -- multi-item capacitated economic ordering quantity model using soco
Parameters:
- I: set of items
- F[i]: ordering cost for item i
- h[i]: holding cost for item i
- d[i]: demand for item i
- w[i]: unit weight for item i
- W: capacity (limit on order quantity)
Returns a model, ready to be solved.
"""
model = Model("EOQ model using SOCO")
T,c = {},{}
for i in I:
T[i] = model.addVar(vtype="C", name="T(%s)"%i) # cycle time for item i
c[i] = model.addVar(vtype="C", name="c(%s)"%i) # total cost for item i
for i in I:
model.addCons(F[i] <= c[i]*T[i])
model.addCons(quicksum(w[i]*d[i]*T[i] for i in I) <= W)
model.setObjective(quicksum(c[i] + h[i]*d[i]*T[i]*0.5 for i in I), "minimize")
model.data = T,c
return model
示例12: test_quicksum_model
def test_quicksum_model():
m = Model("quicksum")
x = m.addVar("x")
y = m.addVar("y")
z = m.addVar("z")
c = 2.3
q = quicksum([x,y,z,c]) == 0.0
s = sum([x,y,z,c]) == 0.0
assert(q.expr.terms == s.expr.terms)
示例13: test_lpi
def test_lpi():
# create LP instance
myLP = LP()
myLP.addRow(entries = [(0,1),(1,2)] ,lhs = 5)
lhs, rhs = myLP.getSides()
assert lhs[0] == 5.0
assert rhs[0] == myLP.infinity()
assert(myLP.ncols() == 2)
myLP.chgObj(0, 1.0)
myLP.chgObj(1, 2.0)
solval = myLP.solve()
# create solver instance
s = Model()
# add some variables
x = s.addVar("x", obj=1.0)
y = s.addVar("y", obj=2.0)
# add some constraint
s.addCons(x + 2*y >= 5)
# solve problem
s.optimize()
# check solution
assert round(s.getVal(x)) == 5.0
assert round(s.getVal(y)) == 0.0
assert round(s.getObjVal() == solval)
示例14: test_largequadratic
def test_largequadratic():
# inspired from performance issue on
# http://stackoverflow.com/questions/38434300
m = Model("dense_quadratic")
dim = 200
x = [m.addVar("x_%d" % i) for i in range(dim)]
expr = quicksum((i+j+1)*x[i]*x[j]
for i in range(dim)
for j in range(dim))
cons = expr <= 1.0
# upper triangle, diagonal
assert len(cons.expr.terms) == dim * (dim-1) / 2 + dim
m.addCons(cons)
示例15: diet
def diet(F,N,a,b,c,d):
"""diet -- model for the modern diet problem
Parameters:
F - set of foods
N - set of nutrients
a[i] - minimum intake of nutrient i
b[i] - maximum intake of nutrient i
c[j] - cost of food j
d[j][i] - amount of nutrient i in food j
Returns a model, ready to be solved.
"""
model = Model("modern diet")
# Create variables
x,y,z = {},{},{}
for j in F:
x[j] = model.addVar(vtype="I", name="x(%s)" % j)
for i in N:
z[i] = model.addVar(lb=a[i], ub=b[i], vtype="C", name="z(%s)" % i)
# Constraints:
for i in N:
model.addCons(quicksum(d[j][i]*x[j] for j in F) == z[i], name="Nutr(%s)" % i)
model.setObjective(quicksum(c[j]*x[j] for j in F), "minimize")
model.data = x,y,z
return model