当前位置: 首页>>代码示例>>Python>>正文


Python Model.getBestSol方法代码示例

本文整理汇总了Python中pyscipopt.Model.getBestSol方法的典型用法代码示例。如果您正苦于以下问题:Python Model.getBestSol方法的具体用法?Python Model.getBestSol怎么用?Python Model.getBestSol使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyscipopt.Model的用法示例。


在下文中一共展示了Model.getBestSol方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_circle

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import getBestSol [as 别名]
def test_circle():
    points =[
            (2.802686, 1.398947),
            (4.719673, 4.792101),
            (1.407758, 7.769566),
            (2.253320, 2.373641),
            (8.583144, 9.769102),
            (3.022725, 5.470335),
            (5.791380, 1.214782),
            (8.304504, 8.196392),
            (9.812677, 5.284600),
            (9.445761, 9.541600)]

    m = Model()
    a = m.addVar('a', lb=None)
    b = m.addVar('b', ub=None)
    r = m.addVar('r')

    # minimize radius
    m.setObjective(r, 'minimize')

    for i,p in enumerate(points):
        # NOTE: SCIP will not identify this as SOC constraints!
        m.addCons( sqrt((a - p[0])**2 + (b - p[1])**2) <= r, name = 'point_%d'%i)

    m.optimize()

    bestsol = m.getBestSol()
    assert abs(m.getSolVal(bestsol, r) - 5.2543) < 1.0e-3
    assert abs(m.getSolVal(bestsol, a) - 6.1242) < 1.0e-3
    assert abs(m.getSolVal(bestsol, b) - 5.4702) < 1.0e-3
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:33,代码来源:test_nonlinear.py

示例2: test_model

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import getBestSol [as 别名]
def test_model():
    # create solver instance
    s = Model()

    # add some variables
    x = s.addVar("x", vtype = 'C', obj = 1.0)
    y = s.addVar("y", vtype = 'C', obj = 2.0)

    assert x.getObj() == 1.0
    assert y.getObj() == 2.0

    s.setObjective(4.0 * y + 10.5, clear = False)
    assert x.getObj() == 1.0
    assert y.getObj() == 4.0
    assert s.getObjoffset() == 10.5

    # add some constraint
    c = s.addCons(x + 2 * y >= 1.0)
    assert c.isLinear()
    s.chgLhs(c, 5.0)
    s.chgRhs(c, 6.0)

    assert s.getLhs(c) == 5.0
    assert s.getRhs(c) == 6.0

    # solve problem
    s.optimize()

    solution = s.getBestSol()

    # print solution
    assert (s.getVal(x) == s.getSolVal(solution, x))
    assert (s.getVal(y) == s.getSolVal(solution, y))
    assert round(s.getVal(x)) == 5.0
    assert round(s.getVal(y)) == 0.0
    assert s.getSlack(c, solution) == 0.0
    assert s.getSlack(c, solution, 'lhs') == 0.0
    assert s.getSlack(c, solution, 'rhs') == 1.0
    assert s.getActivity(c, solution) == 5.0

    s.writeProblem('model')
    s.writeProblem('model.lp')

    s.freeProb()
    s = Model()
    x = s.addVar("x", vtype = 'C', obj = 1.0)
    y = s.addVar("y", vtype = 'C', obj = 2.0)
    c = s.addCons(x + 2 * y <= 1.0)
    s.setMaximize()

    s.delCons(c)

    s.optimize()

    assert s.getStatus() == 'unbounded'
开发者ID:SCIP-Interfaces,项目名称:PySCIPOpt,代码行数:57,代码来源:test_model.py

示例3: test_knapsack

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import getBestSol [as 别名]
def test_knapsack():
    # create solver instance
    s = Model("Knapsack")
    s.hideOutput()

    # setting the objective sense to maximise
    s.setMaximize()

    # item weights
    weights = [4, 2, 6, 3, 7, 5]
    # item costs
    costs = [7, 2, 5, 4, 3, 4]

    assert len(weights) == len(costs)

    # knapsack size
    knapsackSize = 15

    # adding the knapsack variables
    knapsackVars = []
    varNames = []
    varBaseName = "Item"
    for i in range(len(weights)):
        varNames.append(varBaseName + "_" + str(i))
        knapsackVars.append(s.addVar(varNames[i], vtype='I', obj=costs[i], ub=1.0))


    # adding a linear constraint for the knapsack constraint
    coeffs = {knapsackVars[i]: weights[i] for i in range(len(weights))}
    s.addCons(coeffs, lhs=None, rhs=knapsackSize)

    # solve problem
    s.optimize()

    s.printStatistics()

    # retrieving the best solution
    solution = s.getBestSol()

    # print solution
    varSolutions = []
    for i in range(len(weights)):
        solValue = round(s.getVal(knapsackVars[i], solution))
        varSolutions.append(solValue)
        if solValue > 0:
            print (varNames[i], "Times Selected:", solValue)
            print ("\tIncluded Weight:", weights[i]*solValue, "\tItem Cost:", costs[i]*solValue)

        s.releaseVar(knapsackVars[i])

    includedWeight = sum([weights[i]*varSolutions[i] for i in range(len(weights))])
    assert includedWeight > 0 and includedWeight <= knapsackSize
开发者ID:gorhan,项目名称:LFOS,代码行数:54,代码来源:test_knapsack.py

示例4: test_lp

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import getBestSol [as 别名]
def test_lp():
    # create solver instance
    s = Model()

    # add some variables
    x = s.addVar("x", vtype='C', obj=1.0)
    y = s.addVar("y", vtype='C', obj=2.0)

    # add some constraint
    s.addCons(x + 2*y >= 5.0)

    # solve problem
    s.optimize()

    solution = s.getBestSol()

    # print solution
    assert (s.getVal(x) == s.getSolVal(solution, x))
    assert (s.getVal(y) == s.getSolVal(solution, y))
    assert round(s.getVal(x)) == 5.0
    assert round(s.getVal(y)) == 0.0
开发者ID:fserra,项目名称:PySCIPOpt,代码行数:23,代码来源:test_lp.py

示例5: test_simplelp

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import getBestSol [as 别名]
def test_simplelp():
    # create solver instance
    s = Model()

    # add some variables
    x = s.addVar("x", vtype='C', obj=1.0)
    y = s.addVar("y", vtype='C', obj=2.0)

    # add some constraint
    coeffs = {x: 1.0, y: 2.0}
    s.addCons(coeffs, 5.0)

    # solve problem
    s.optimize()

    # retrieving the best solution
    solution = s.getBestSol()

    # print solution
    assert round(s.getVal(x, solution)) == 5.0
    assert round(s.getVal(y, solution)) == 0.0

    s.free()
开发者ID:gorhan,项目名称:LFOS,代码行数:25,代码来源:test_simplelp.py

示例6: getColumnFromMIP

# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import getBestSol [as 别名]
    def getColumnFromMIP(self, timeLimit):

        def getPatternFromSolution(subMIP):
            edges = []
            for x in subMIP.getVars():
                if "x" in x.name:
                    if subMIP.getVal(x) > 0.99:
                        i, j = x.name.split("_")[1:]
                        edges.append((int(i), int(j)))
                    
            return edges

        # Storing the values of the dual solutions:
        dualSols = {}
        for c in self.cons:
            i = int(c.name.split("_")[-1].strip())
            dualSols[i] = self.model.getDualsolLinear(c)

        # Model for the sub-problem:
        subMIP = Model("VRP-Sub")
        subMIP.setPresolve(SCIP_PARAMSETTING.OFF)
        subMIP.setMinimize

        subMIP.setRealParam("limits/time", timeLimit)
        
        # Binary variables x_ij indicating whether the vehicle
        # traverses edge (i, j)
        x = {}
        for i in self.data.nodes:
            for j in self.data.nodes:
                if i != j:
                    x[i, j] = subMIP.addVar(vtype="B", obj=self.data.costs[i, j] - (dualSols[i] if i in self.clientNodes else 0), name="x_%d_%d" % (i, j))

        # Non negative variables u_i indicating the demand served up to node i:
        u = {}
        for i in self.data.nodes:
            u[i] = subMIP.addVar(vtype="C", lb=0, ub=self.data.cap, obj=0.0, name="u_%d" % i)

        for j in self.clientNodes:
            subMIP.addCons(quicksum(x[i, j] for i in self.data.nodes if i != j) <= 1)

        for h in self.clientNodes:
            subMIP.addCons(quicksum(x[i, h] for i in self.data.nodes if i != h) ==
                           quicksum(x[h, i] for i in self.data.nodes if i != h))

        for i in self.data.nodes:
            for j in self.clientNodes:
                if i != j:
                    subMIP.addCons(u[j] >= u[i] + self.data.demands[j]*x[i, j] - self.data.cap*(1 - x[i, j]))

        subMIP.addCons(quicksum(x[self.data.depot, j] for j in self.clientNodes) <= 1)

        subMIP.hideOutput()
        subMIP.optimize()

        mipSol = subMIP.getBestSol()
        obj = subMIP.getSolObjVal(mipSol)
        
        pattern = getPatternFromSolution(subMIP)
        
        return obj, pattern
开发者ID:pedrocastellucci,项目名称:playground,代码行数:63,代码来源:vrp_scip_cg.py


注:本文中的pyscipopt.Model.getBestSol方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。