本文整理汇总了Python中pyscipopt.Model.addCons方法的典型用法代码示例。如果您正苦于以下问题:Python Model.addCons方法的具体用法?Python Model.addCons怎么用?Python Model.addCons使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyscipopt.Model
的用法示例。
在下文中一共展示了Model.addCons方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: scheduling_time_index
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def scheduling_time_index(J,p,r,w):
"""
scheduling_time_index: model for the one machine total weighted tardiness problem
Model for the one machine total weighted tardiness problem
using the time index formulation
Parameters:
- J: set of jobs
- p[j]: processing time of job j
- r[j]: earliest start time of job j
- w[j]: weighted of job j; the objective is the sum of the weighted completion time
Returns a model, ready to be solved.
"""
model = Model("scheduling: time index")
T = max(r.values()) + sum(p.values())
X = {} # X[j,t]=1 if job j starts processing at time t, 0 otherwise
for j in J:
for t in range(r[j], T-p[j]+2):
X[j,t] = model.addVar(vtype="B", name="x(%s,%s)"%(j,t))
for j in J:
model.addCons(quicksum(X[j,t] for t in range(1,T+1) if (j,t) in X) == 1, "JobExecution(%s)"%(j))
for t in range(1,T+1):
ind = [(j,t2) for j in J for t2 in range(t-p[j]+1,t+1) if (j,t2) in X]
if ind != []:
model.addCons(quicksum(X[j,t2] for (j,t2) in ind) <= 1, "MachineUB(%s)"%t)
model.setObjective(quicksum((w[j] * (t - 1 + p[j])) * X[j,t] for (j,t) in X), "minimize")
model.data = X
return model
示例2: mils_echelon
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def mils_echelon(T,K,P,f,g,c,d,h,a,M,UB,phi):
"""
mils_echelon: echelon formulation for the multi-item, multi-stage lot-sizing problem
Parameters:
- T: number of periods
- K: set of resources
- P: set of items
- f[t,p]: set-up costs (on period t, for product p)
- g[t,p]: set-up times
- c[t,p]: variable costs
- d[t,p]: demand values
- h[t,p]: holding costs
- a[t,k,p]: amount of resource k for producing p in period t
- M[t,k]: resource k upper bound on period t
- UB[t,p]: upper bound of production time of product p in period t
- phi[(i,j)]: units of i required to produce a unit of j (j parent of i)
"""
rho = calc_rho(phi) # rho[(i,j)]: units of i required to produce a unit of j (j ancestor of i)
model = Model("multi-stage lotsizing -- echelon formulation")
y,x,E,H = {},{},{},{}
Ts = range(1,T+1)
for p in P:
for t in Ts:
y[t,p] = model.addVar(vtype="B", name="y(%s,%s)"%(t,p))
x[t,p] = model.addVar(vtype="C", name="x(%s,%s)"%(t,p))
H[t,p] = h[t,p] - sum([h[t,q]*phi[q,p] for (q,p2) in phi if p2 == p])
E[t,p] = model.addVar(vtype="C", name="E(%s,%s)"%(t,p)) # echelon inventory
E[0,p] = model.addVar(vtype="C", name="E(%s,%s)"%(0,p)) # echelon inventory
for t in Ts:
for p in P:
# flow conservation constraints
dsum = d[t,p] + sum([rho[p,q]*d[t,q] for (p2,q) in rho if p2 == p])
model.addCons(E[t-1,p] + x[t,p] == E[t,p] + dsum, "FlowCons(%s,%s)"%(t,p))
# capacity connection constraints
model.addCons(x[t,p] <= UB[t,p]*y[t,p], "ConstrUB(%s,%s)"%(t,p))
# time capacity constraints
for k in K:
model.addCons(quicksum(a[t,k,p]*x[t,p] + g[t,p]*y[t,p] for p in P) <= M[t,k],
"TimeUB(%s,%s)"%(t,k))
# calculate echelon quantities
for p in P:
model.addCons(E[0,p] == 0, "EchelonInit(%s)"%(p))
for t in Ts:
model.addCons(E[t,p] >= quicksum(phi[p,q]*E[t,q] for (p2,q) in phi if p2 == p),
"EchelonLB(%s,%s)"%(t,p))
model.setObjective(\
quicksum(f[t,p]*y[t,p] + c[t,p]*x[t,p] + H[t,p]*E[t,p] for t in Ts for p in P), \
"minimize")
model.data = y,x,E
return model
示例3: weber
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def weber(I,x,y,w):
"""weber: model for solving the single source weber problem using soco.
Parameters:
- I: set of customers
- x[i]: x position of customer i
- y[i]: y position of customer i
- w[i]: weight of customer i
Returns a model, ready to be solved.
"""
model = Model("weber")
X,Y,z,xaux,yaux = {},{},{},{},{}
X = model.addVar(lb=-model.infinity(), vtype="C", name="X")
Y = model.addVar(lb=-model.infinity(), vtype="C", name="Y")
for i in I:
z[i] = model.addVar(vtype="C", name="z(%s)"%(i))
xaux[i] = model.addVar(lb=-model.infinity(), vtype="C", name="xaux(%s)"%(i))
yaux[i] = model.addVar(lb=-model.infinity(), vtype="C", name="yaux(%s)"%(i))
for i in I:
model.addCons(xaux[i]*xaux[i] + yaux[i]*yaux[i] <= z[i]*z[i], "MinDist(%s)"%(i))
model.addCons(xaux[i] == (x[i]-X), "xAux(%s)"%(i))
model.addCons(yaux[i] == (y[i]-Y), "yAux(%s)"%(i))
model.setObjective(quicksum(w[i]*z[i] for i in I), "minimize")
model.data = X,Y,z
return model
示例4: gcp
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def gcp(V,E,K):
"""gcp -- model for minimizing the number of colors in a graph
Parameters:
- V: set/list of nodes in the graph
- E: set/list of edges in the graph
- K: upper bound on the number of colors
Returns a model, ready to be solved.
"""
model = Model("gcp")
x,y = {},{}
for k in range(K):
y[k] = model.addVar(vtype="B", name="y(%s)"%k)
for i in V:
x[i,k] = model.addVar(vtype="B", name="x(%s,%s)"%(i,k))
for i in V:
model.addCons(quicksum(x[i,k] for k in range(K)) == 1, "AssignColor(%s)"%i)
for (i,j) in E:
for k in range(K):
model.addCons(x[i,k] + x[j,k] <= y[k], "NotSameColor(%s,%s,%s)"%(i,j,k))
model.setObjective(quicksum(y[k] for k in range(K)), "minimize")
model.data = x
return model
示例5: test_circle
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def test_circle():
points =[
(2.802686, 1.398947),
(4.719673, 4.792101),
(1.407758, 7.769566),
(2.253320, 2.373641),
(8.583144, 9.769102),
(3.022725, 5.470335),
(5.791380, 1.214782),
(8.304504, 8.196392),
(9.812677, 5.284600),
(9.445761, 9.541600)]
m = Model()
a = m.addVar('a', lb=None)
b = m.addVar('b', ub=None)
r = m.addVar('r')
# minimize radius
m.setObjective(r, 'minimize')
for i,p in enumerate(points):
# NOTE: SCIP will not identify this as SOC constraints!
m.addCons( sqrt((a - p[0])**2 + (b - p[1])**2) <= r, name = 'point_%d'%i)
m.optimize()
bestsol = m.getBestSol()
assert abs(m.getSolVal(bestsol, r) - 5.2543) < 1.0e-3
assert abs(m.getSolVal(bestsol, a) - 6.1242) < 1.0e-3
assert abs(m.getSolVal(bestsol, b) - 5.4702) < 1.0e-3
示例6: sils
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def sils(T,f,c,d,h):
"""sils -- LP lotsizing for the single item lot sizing problem
Parameters:
- T: number of periods
- P: set of products
- f[t]: set-up costs (on period t)
- c[t]: variable costs
- d[t]: demand values
- h[t]: holding costs
Returns a model, ready to be solved.
"""
model = Model("single item lotsizing")
Ts = range(1,T+1)
M = sum(d[t] for t in Ts)
y,x,I = {},{},{}
for t in Ts:
y[t] = model.addVar(vtype="I", ub=1, name="y(%s)"%t)
x[t] = model.addVar(vtype="C", ub=M, name="x(%s)"%t)
I[t] = model.addVar(vtype="C", name="I(%s)"%t)
I[0] = 0
for t in Ts:
model.addCons(x[t] <= M*y[t], "ConstrUB(%s)"%t)
model.addCons(I[t-1] + x[t] == I[t] + d[t], "FlowCons(%s)"%t)
model.setObjective(\
quicksum(f[t]*y[t] + c[t]*x[t] + h[t]*I[t] for t in Ts),\
"minimize")
model.data = y,x,I
return model
示例7: create_model
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def create_model():
# create solver instance
s = Model()
# add some variables
x = s.addVar("x", obj = -1.0, vtype = "I", lb=-10)
y = s.addVar("y", obj = 1.0, vtype = "I", lb=-1000)
z = s.addVar("z", obj = 1.0, vtype = "I", lb=-1000)
# add some constraint
s.addCons(314*x + 867*y + 860*z == 363)
s.addCons(87*x + 875*y - 695*z == 423)
# create conshdlr and include it to SCIP
conshdlr = MyConshdlr(shouldtrans=True, shouldcopy=False)
s.includeConshdlr(conshdlr, "PyCons", "custom constraint handler implemented in python",
sepapriority = 1, enfopriority = -1, chckpriority = 1, sepafreq = 10, propfreq = 50,
eagerfreq = 1, maxprerounds = -1, delaysepa = False, delayprop = False, needscons = True,
presoltiming = SCIP_PRESOLTIMING.FAST, proptiming = SCIP_PROPTIMING.BEFORELP)
cons1 = s.createCons(conshdlr, "cons1name")
ids.append(id(cons1))
cons2 = s.createCons(conshdlr, "cons2name")
ids.append(id(cons2))
conshdlr.createData(cons1, 10, "cons1_anothername")
conshdlr.createData(cons2, 12, "cons2_anothername")
# add these constraints
s.addPyCons(cons1)
s.addPyCons(cons2)
return s
示例8: gpp
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def gpp(V,E):
"""gpp -- model for the graph partitioning problem
Parameters:
- V: set/list of nodes in the graph
- E: set/list of edges in the graph
Returns a model, ready to be solved.
"""
model = Model("gpp")
x = {}
y = {}
for i in V:
x[i] = model.addVar(vtype="B", name="x(%s)"%i)
for (i,j) in E:
y[i,j] = model.addVar(vtype="B", name="y(%s,%s)"%(i,j))
model.addCons(quicksum(x[i] for i in V) == len(V)/2, "Partition")
for (i,j) in E:
model.addCons(x[i] - x[j] <= y[i,j], "Edge(%s,%s)"%(i,j))
model.addCons(x[j] - x[i] <= y[i,j], "Edge(%s,%s)"%(j,i))
model.setObjective(quicksum(y[i,j] for (i,j) in E), "minimize")
model.data = x
return model
示例9: eoq_soco
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def eoq_soco(I,F,h,d,w,W):
"""eoq_soco -- multi-item capacitated economic ordering quantity model using soco
Parameters:
- I: set of items
- F[i]: ordering cost for item i
- h[i]: holding cost for item i
- d[i]: demand for item i
- w[i]: unit weight for item i
- W: capacity (limit on order quantity)
Returns a model, ready to be solved.
"""
model = Model("EOQ model using SOCO")
T,c = {},{}
for i in I:
T[i] = model.addVar(vtype="C", name="T(%s)"%i) # cycle time for item i
c[i] = model.addVar(vtype="C", name="c(%s)"%i) # total cost for item i
for i in I:
model.addCons(F[i] <= c[i]*T[i])
model.addCons(quicksum(w[i]*d[i]*T[i] for i in I) <= W)
model.setObjective(quicksum(c[i] + h[i]*d[i]*T[i]*0.5 for i in I), "minimize")
model.data = T,c
return model
示例10: gcp_fixed_k
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def gcp_fixed_k(V,E,K):
"""gcp_fixed_k -- model for minimizing number of bad edges in coloring a graph
Parameters:
- V: set/list of nodes in the graph
- E: set/list of edges in the graph
- K: number of colors to be used
Returns a model, ready to be solved.
"""
model = Model("gcp - fixed k")
x,z = {},{}
for i in V:
for k in range(K):
x[i,k] = model.addVar(vtype="B", name="x(%s,%s)"%(i,k))
for (i,j) in E:
z[i,j] = model.addVar(vtype="B", name="z(%s,%s)"%(i,j))
for i in V:
model.addCons(quicksum(x[i,k] for k in range(K)) == 1, "AssignColor(%s)" % i)
for (i,j) in E:
for k in range(K):
model.addCons(x[i,k] + x[j,k] <= 1 + z[i,j], "BadEdge(%s,%s,%s)"%(i,j,k))
model.setObjective(quicksum(z[i,j] for (i,j) in E), "minimize")
model.data = x,z
return model
示例11: test_event
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def test_event():
# create solver instance
s = Model()
s.hideOutput()
s.setPresolve(SCIP_PARAMSETTING.OFF)
eventhdlr = MyEvent()
s.includeEventhdlr(eventhdlr, "TestFirstLPevent", "python event handler to catch FIRSTLPEVENT")
# add some variables
x = s.addVar("x", obj=1.0)
y = s.addVar("y", obj=2.0)
# add some constraint
s.addCons(x + 2*y >= 5)
# solve problem
s.optimize()
# print solution
assert round(s.getVal(x)) == 5.0
assert round(s.getVal(y)) == 0.0
del s
assert 'eventinit' in calls
assert 'eventexit' in calls
assert 'eventexec' in calls
assert len(calls) == 3
示例12: mctransp
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def mctransp(I,J,K,c,d,M):
"""mctransp -- model for solving the Multi-commodity Transportation Problem
Parameters:
- I: set of customers
- J: set of facilities
- K: set of commodities
- c[i,j,k]: unit transportation cost on arc (i,j) for commodity k
- d[i][k]: demand for commodity k at node i
- M[j]: capacity
Returns a model, ready to be solved.
"""
model = Model("multi-commodity transportation")
# Create variables
x = {}
for (i,j,k) in c:
x[i,j,k] = model.addVar(vtype="C", name="x(%s,%s,%s)" % (i,j,k), obj=c[i,j,k])
# todo
arcs = tuplelist([(i,j,k) for (i,j,k) in x])
# Demand constraints
for i in I:
for k in K:
model.addCons(sum(x[i,j,k] for (i,j,k) in arcs.select(i,"*",k)) == d[i,k], "Demand(%s,%s)" % (i,k))
# Capacity constraints
for j in J:
model.addConstr(sum(x[i,j,k] for (i,j,k) in arcs.select("*",j,"*")) <= M[j], "Capacity(%s)" % j)
model.data = x
return model
示例13: tsp
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def tsp(V,c):
"""tsp -- model for solving the traveling salesman problem with callbacks
- start with assignment model
- add cuts until there are no sub-cycles
Parameters:
- V: set/list of nodes in the graph
- c[i,j]: cost for traversing edge (i,j)
Returns the optimum objective value and the list of edges used.
"""
model = Model("TSP_lazy")
conshdlr = TSPconshdlr()
x = {}
for i in V:
for j in V:
if j > i:
x[i,j] = model.addVar(vtype = "B",name = "x(%s,%s)" % (i,j))
for i in V:
model.addCons(quicksum(x[j, i] for j in V if j < i) +
quicksum(x[i, j] for j in V if j > i) == 2, "Degree(%s)" % i)
model.setObjective(quicksum(c[i, j] * x[i, j] for i in V for j in V if j > i), "minimize")
model.data = x
return model, conshdlr
示例14: diet
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def diet(F,N,a,b,c,d):
"""diet -- model for the modern diet problem
Parameters:
F - set of foods
N - set of nutrients
a[i] - minimum intake of nutrient i
b[i] - maximum intake of nutrient i
c[j] - cost of food j
d[j][i] - amount of nutrient i in food j
Returns a model, ready to be solved.
"""
model = Model("modern diet")
# Create variables
x,y,z = {},{},{}
for j in F:
x[j] = model.addVar(vtype="I", name="x(%s)" % j)
for i in N:
z[i] = model.addVar(lb=a[i], ub=b[i], vtype="C", name="z(%s)" % i)
# Constraints:
for i in N:
model.addCons(quicksum(d[j][i]*x[j] for j in F) == z[i], name="Nutr(%s)" % i)
model.setObjective(quicksum(c[j]*x[j] for j in F), "minimize")
model.data = x,y,z
return model
示例15: mtz_strong
# 需要导入模块: from pyscipopt import Model [as 别名]
# 或者: from pyscipopt.Model import addCons [as 别名]
def mtz_strong(n,c):
"""mtz_strong: Miller-Tucker-Zemlin's model for the (asymmetric) traveling salesman problem
(potential formulation, adding stronger constraints)
Parameters:
n - number of nodes
c[i,j] - cost for traversing arc (i,j)
Returns a model, ready to be solved.
"""
model = Model("atsp - mtz-strong")
x,u = {},{}
for i in range(1,n+1):
u[i] = model.addVar(lb=0, ub=n-1, vtype="C", name="u(%s)"%i)
for j in range(1,n+1):
if i != j:
x[i,j] = model.addVar(vtype="B", name="x(%s,%s)"%(i,j))
for i in range(1,n+1):
model.addCons(quicksum(x[i,j] for j in range(1,n+1) if j != i) == 1, "Out(%s)"%i)
model.addCons(quicksum(x[j,i] for j in range(1,n+1) if j != i) == 1, "In(%s)"%i)
for i in range(1,n+1):
for j in range(2,n+1):
if i != j:
model.addCons(u[i] - u[j] + (n-1)*x[i,j] + (n-3)*x[j,i] <= n-2, "LiftedMTZ(%s,%s)"%(i,j))
for i in range(2,n+1):
model.addCons(-x[1,i] - u[i] + (n-3)*x[i,1] <= -2, name="LiftedLB(%s)"%i)
model.addCons(-x[i,1] + u[i] + (n-3)*x[1,i] <= n-2, name="LiftedUB(%s)"%i)
model.setObjective(quicksum(c[i,j]*x[i,j] for (i,j) in x), "minimize")
model.data = x,u
return model