当前位置: 首页>>代码示例>>Python>>正文


Python HMM.evaluate方法代码示例

本文整理汇总了Python中hmm.HMM.evaluate方法的典型用法代码示例。如果您正苦于以下问题:Python HMM.evaluate方法的具体用法?Python HMM.evaluate怎么用?Python HMM.evaluate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在hmm.HMM的用法示例。


在下文中一共展示了HMM.evaluate方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: HMMClassifier

# 需要导入模块: from hmm import HMM [as 别名]
# 或者: from hmm.HMM import evaluate [as 别名]
class HMMClassifier(object):
    def __init__(self, **kwarg):    # lname, url, other prior knowledge
        super(HMMClassifier, self).__init__()
        self.HMMauthor = HMM('author', 2)
        self.HMMvenue = HMM('venue', 2)     # Not important
        self.HMMentire = HMM('entire', 6)   # Set empirically
        self.observations_raw = []
        self.observation_sequences = []
        self.labels = []


    def predict(self, segment):
        author_likelihood = self.HMMauthor.evaluate(segment)
        venue_likelihood = self.HMMvenue.evaluate(segment)
        print segment
        print 'author likelihood:\t' , author_likelihood
        print 'venue likelihood:\t' , venue_likelihood

    def decode(self, segment):
        # print segment
        observation_sequence, decoded_sequence = self.HMMentire.decode(segment)
        
        self.observations_raw.append(segment)
        self.observation_sequences.append(observation_sequence)
        self.labels.append(decoded_sequence)


        # segment the labeling into parts
        author_field = []
        title_field = []
        venue_field = []
        year_field = []
        raw_tokens = Tokens(segment).tokens
        for i in range(len(decoded_sequence)):
            token_i = raw_tokens[i]
            label_i = decoded_sequence[i]
            if label_i in [0,1]:
                author_field.append(token_i)
            if label_i == 2:
                continue
            if label_i == 3:
                title_field.append(token_i)
            if label_i == 4:
                venue_field.append(token_i)
            if label_i == 5:
                year_field.append(token_i)

        return ' '.join(author_field), ' '.join(title_field), ' '.join(venue_field), list(set(year_field))
        # Additional step: to calculate the overall sum of P(X1|FN,LN,DL...) + P(X2|TI,TI,TI...) + P(X3|VN,VN,VN...) + P(X4|DT)
        # 1. Find boundaries: 
        # boundaries = [[], [], []]
        # label_ranges = [[0,1,2], [3], [2,4,5]]
        # for i in range(len(label_ranges)):
        #     label_range = label_ranges[i]
        #     for j in range(len(decoded_sequence)):
        #         if decoded_sequence[j] in label_range:
        #             boundaries[i].append()

    
    def decode_without_constraints(self, segment):
        print segment
        observation_sequence, decoded_sequence = self.HMMentire.decode_without_constraints(segment)
        
        self.observations_raw.append(segment)
        self.observation_sequences.append(observation_sequence)
        self.labels.append(decoded_sequence)

        for vector, decoding, token in zip(observation_sequence, decoded_sequence, Tokens(segment).tokens):
            if decoding == 0:
                label = 'FN'
            elif decoding == 1:
                label = 'LN'
            elif decoding == 2:
                label = 'DL'
            elif decoding == 3:
                label = 'TI'
            elif decoding == 4:
                label = 'VN'
            elif decoding == 5:
                label = 'YR'
            else:
                label = str(decoding) + ', PROBLEM'
            print vector, '\t', label, '\t', token
        print '\n\n'

    def cross_correct(self):
        absolute_correct = []
        absolute_wrong = []

        # 1. Confirm what's the big structure of the publication inside this specific domain
        counter = {}
        for l in self.labels:
            first_label = str(l[0])
            if counter.has_key(first_label):
                counter[first_label] += 1
            else:
                counter[first_label] = 1
        sorted_counter = sorted(counter.iteritems(), key=operator.itemgetter(1), reverse=True)
        print 'First labels distribution: ', sorted_counter

#.........这里部分代码省略.........
开发者ID:xiaoyao1991,项目名称:hmmpy,代码行数:103,代码来源:classifier.py

示例2: HMM

# 需要导入模块: from hmm import HMM [as 别名]
# 或者: from hmm.HMM import evaluate [as 别名]
model = HMM()
model.init_random(3,4)

print model.trans
for line in model.trans:
    print sum(line)

print model.emit
for line in model.emit:
    print sum(line)

def dataFormatter(filename):
    with open(filename,'r') as f:
        tmp = [ list(s) for s in f.read().split()]
        sample = []
        for seq in tmp:
            seq = map(lambda x:ord(x)-ord('A'), seq)
            sample.append(seq)
        return sample

#sample = sample[0]
sample = dataFormatter('hmm_test1.in')
print sample

model.train(sample)

forEvaluation = dataFormatter('hmm_evaluation.in')

for seq in forEvaluation:
    print model.evaluate(seq)
开发者ID:uronce-cc,项目名称:Cpattern,代码行数:32,代码来源:hmm_test.py


注:本文中的hmm.HMM.evaluate方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。