当前位置: 首页>>代码示例>>Python>>正文


Python HMM.decode方法代码示例

本文整理汇总了Python中hmm.HMM.decode方法的典型用法代码示例。如果您正苦于以下问题:Python HMM.decode方法的具体用法?Python HMM.decode怎么用?Python HMM.decode使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在hmm.HMM的用法示例。


在下文中一共展示了HMM.decode方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from hmm import HMM [as 别名]
# 或者: from hmm.HMM import decode [as 别名]
def main():
    hmm = HMM(*train(sys.argv[1]))
    
    with open(sys.argv[2]) as f:
        correct = 0
        wrong = 0
        
        correct_sents = 0
        wrong_sents = 0
        
        correct_known = 0
        wrong_known = 0
        
        for i, sent in enumerate(Reader(f)):
            prob, path = hmm.decode([word for (word, pos) in sent])
            correct1 = 0
            wrong1 = 0
            for (gold, predicted) in zip(sent, path):
                if gold == predicted:
                    correct1 += 1
                else:
                    wrong1 += 1
            print('%e\t%.3f\t%s' % (prob, correct1 / (correct1 + wrong1), ' '.join('%s/%s' % pair for pair in path)))
            if prob > 0:
                correct_sents += 1
                correct_known += correct1
                wrong_known += wrong1
            else:
                wrong_sents += 1
            correct += correct1
            wrong += wrong1
    
    print("Correctly tagged words: %s" % (correct / (correct + wrong)))
    print("Sentences with non-zero probability: %s" % (correct_sents / (correct_sents + wrong_sents)))
    print("Correctly tagged words when only considering sentences with non-zero probability: %s" % (correct_known / (correct_known + wrong_known)))
开发者ID:steffervescency,项目名称:compling,代码行数:37,代码来源:tagger.py

示例2: main

# 需要导入模块: from hmm import HMM [as 别名]
# 或者: from hmm.HMM import decode [as 别名]
def main():
    hmm = HMM(3, ('up', 'down', 'unchanged'),
              initial_probability=[0.5, 0.2, 0.3],
              transition_probability=[[0.6, 0.2, 0.2],
                                      [0.5, 0.3, 0.2],
                                      [0.4, 0.1, 0.5]],
              observation_probability=[[0.7, 0.1, 0.2],
                                       [0.1, 0.6, 0.3],
                                       [0.3, 0.3, 0.4]])

    observation = ("up", "up", "unchanged", "down", "unchanged", "down", "up")
    ob_length = len(observation)
    p, _ = hmm.forward(observation, ob_length)
    path = hmm.decode(observation, ob_length)
    print("P{} = {:.13f}".format(tuple(observation), p))
    print("Observation sequence =", tuple(i+1 for i in path))
开发者ID:hane1818,项目名称:Simple-HMM,代码行数:18,代码来源:hw1.py

示例3: HMMClassifier

# 需要导入模块: from hmm import HMM [as 别名]
# 或者: from hmm.HMM import decode [as 别名]
class HMMClassifier(object):
    def __init__(self, **kwarg):    # lname, url, other prior knowledge
        super(HMMClassifier, self).__init__()
        self.HMMauthor = HMM('author', 2)
        self.HMMvenue = HMM('venue', 2)     # Not important
        self.HMMentire = HMM('entire', 6)   # Set empirically
        self.observations_raw = []
        self.observation_sequences = []
        self.labels = []


    def predict(self, segment):
        author_likelihood = self.HMMauthor.evaluate(segment)
        venue_likelihood = self.HMMvenue.evaluate(segment)
        print segment
        print 'author likelihood:\t' , author_likelihood
        print 'venue likelihood:\t' , venue_likelihood

    def decode(self, segment):
        # print segment
        observation_sequence, decoded_sequence = self.HMMentire.decode(segment)
        
        self.observations_raw.append(segment)
        self.observation_sequences.append(observation_sequence)
        self.labels.append(decoded_sequence)


        # segment the labeling into parts
        author_field = []
        title_field = []
        venue_field = []
        year_field = []
        raw_tokens = Tokens(segment).tokens
        for i in range(len(decoded_sequence)):
            token_i = raw_tokens[i]
            label_i = decoded_sequence[i]
            if label_i in [0,1]:
                author_field.append(token_i)
            if label_i == 2:
                continue
            if label_i == 3:
                title_field.append(token_i)
            if label_i == 4:
                venue_field.append(token_i)
            if label_i == 5:
                year_field.append(token_i)

        return ' '.join(author_field), ' '.join(title_field), ' '.join(venue_field), list(set(year_field))
        # Additional step: to calculate the overall sum of P(X1|FN,LN,DL...) + P(X2|TI,TI,TI...) + P(X3|VN,VN,VN...) + P(X4|DT)
        # 1. Find boundaries: 
        # boundaries = [[], [], []]
        # label_ranges = [[0,1,2], [3], [2,4,5]]
        # for i in range(len(label_ranges)):
        #     label_range = label_ranges[i]
        #     for j in range(len(decoded_sequence)):
        #         if decoded_sequence[j] in label_range:
        #             boundaries[i].append()

    
    def decode_without_constraints(self, segment):
        print segment
        observation_sequence, decoded_sequence = self.HMMentire.decode_without_constraints(segment)
        
        self.observations_raw.append(segment)
        self.observation_sequences.append(observation_sequence)
        self.labels.append(decoded_sequence)

        for vector, decoding, token in zip(observation_sequence, decoded_sequence, Tokens(segment).tokens):
            if decoding == 0:
                label = 'FN'
            elif decoding == 1:
                label = 'LN'
            elif decoding == 2:
                label = 'DL'
            elif decoding == 3:
                label = 'TI'
            elif decoding == 4:
                label = 'VN'
            elif decoding == 5:
                label = 'YR'
            else:
                label = str(decoding) + ', PROBLEM'
            print vector, '\t', label, '\t', token
        print '\n\n'

    def cross_correct(self):
        absolute_correct = []
        absolute_wrong = []

        # 1. Confirm what's the big structure of the publication inside this specific domain
        counter = {}
        for l in self.labels:
            first_label = str(l[0])
            if counter.has_key(first_label):
                counter[first_label] += 1
            else:
                counter[first_label] = 1
        sorted_counter = sorted(counter.iteritems(), key=operator.itemgetter(1), reverse=True)
        print 'First labels distribution: ', sorted_counter

#.........这里部分代码省略.........
开发者ID:xiaoyao1991,项目名称:hmmpy,代码行数:103,代码来源:classifier.py

示例4: Retrainer

# 需要导入模块: from hmm import HMM [as 别名]
# 或者: from hmm.HMM import decode [as 别名]
class Retrainer(object):
    def __init__(self, raw_segments, observation_sequences, label_sequences):
        super(Retrainer, self).__init__()
        self.raw_segments = raw_segments
        self.observation_sequences = observation_sequences
        self.label_sequences = label_sequences
        self.hmm_new = None
        self.feature_entity_list = FeatureEntityList()
        self.lm = LanguageModel()
        self.boosting_feature_generator = BoostingFeatureGenerator()

        self.DOMINANT_RATIO = 0.85  # dominant label ratio: set empirically

        self.retrain_with_boosting_features()
    
    def retrain(self):
        self.hmm_new = HMM('retrainer', 6)
        self.hmm_new.train(self.observation_sequences, self.label_sequences, useLaplaceRule=False)  #important to set laplace to be no
    
    # With new features
    def retrain_with_boosting_features(self):
        # Build language model
        for raw_segment, label_sequence in zip(self.raw_segments, self.label_sequences):
            for token, label in zip(Tokens(raw_segment).tokens, label_sequence):
                self.lm.add(token, label)
        self.lm.prettify()
        self.token_BGM = self.lm.prettify_model
        self.pattern_BGM = None

        # Retrain
        self.hmm_new = HMM('retrainer', 6)
        partial_features = []
        for raw_segment in self.raw_segments:
            partial_features.append(BoostingFeatureGenerator(raw_segment, self.token_BGM, self.pattern_BGM).features)
        self.hmm_new.train(partial_features, self.label_sequences, useLaplaceRule=False)
        self.observation_sequences = partial_features


    def run(self):
        i = 0
        self.new_labels = []
        for raw_segment, label_sequence in zip(self.raw_segments, self.label_sequences):
            new_labels = self.hmm_new.decode(raw_segment)[1]
            self.new_labels.append(new_labels)
            tokens = Tokens(raw_segment).tokens
            feature_vectors = FeatureGenerator(raw_segment).features
            print i, ':  ', raw_segment
            for token, old_label, new_label, feature_vector in zip(tokens, label_sequence, new_labels, feature_vectors):
                print to_label(old_label), '\t', to_label(new_label), '\t', token
                self.feature_entity_list.add_entity(feature_vector, old_label, token)   #???? Old label first
            print '\n'
            i+=1

    def find_pattern(self):        
        self.hmm_new.feature_entity_list.print_all_entity()


    # Find the first tokens at VN boundaries
    def find_venue_boundary_tokens(self):
        recorder = {}
        for raw_segment, observation_sequence, label_sequence in zip(self.raw_segments, self.observation_sequences, self.label_sequences):
            first_target_label_flag = True
            tokens = Tokens(raw_segment).tokens
            for token, feature_vector, label in zip(tokens, observation_sequence, label_sequence):
                # First meet a VN label
                if label == 4 and first_target_label_flag:
                    key = token.lower()
                    if not key.islower():
                        continue
                    if recorder.has_key(key):
                        recorder[key] += 1
                    else:
                        recorder[key] = 1
                    first_target_label_flag = False

                elif (first_target_label_flag is False) and label in [0,1,3]:
                    first_target_label_flag = True

        for k,v in recorder.iteritems():
            print k, '\t', v
        return recorder


    # Learn the general order of structure of publications before moving forward
    def find_majority_structure(self):
        first_bit_counter = {'0': 0, '3': 0, '4':0, '5':0}
        overall_pattern_counter = {}
        for label_sequence in self.label_sequences:
            label = label_sequence[0]
            if label == 2:
                continue
            elif label == 5:
                continue
            elif label in [0,1]:
                first_bit_counter['0'] += 1
            else:
                first_bit_counter[str(label)] += 1

            pattern = []
            for label in label_sequence:
#.........这里部分代码省略.........
开发者ID:xiaoyao1991,项目名称:hmmpy,代码行数:103,代码来源:retrainer.py


注:本文中的hmm.HMM.decode方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。