当前位置: 首页>>代码示例>>Python>>正文


Python HMM.emit方法代码示例

本文整理汇总了Python中hmm.HMM.emit方法的典型用法代码示例。如果您正苦于以下问题:Python HMM.emit方法的具体用法?Python HMM.emit怎么用?Python HMM.emit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在hmm.HMM的用法示例。


在下文中一共展示了HMM.emit方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from hmm import HMM [as 别名]
# 或者: from hmm.HMM import emit [as 别名]
def main():
    run_data = {}
    run_id = 0

    scale = 0.5
    emissions_normal = { 1: Normal(0, 2.0 * scale),
                         2: Normal(3.5, 3.0 * scale),
                         3: Normal(6.5, 1.0 * scale) }
    emissions_laplace = { 1: Laplace(0, 2.0 * scale),
                          2: Laplace(3.5, 3.0 * scale),
                          3: Laplace(6.5, 1.0 * scale) }
    emission_spec = emissions_normal
    dists = [Normal(max_sigma = 6.0) for n in range(3)]
    num_state_reps = 50
    num_emission_reps = 4
    num_gamma_init_reps = 4
    num_blocks = [1, 2, 5, 10, 20, 50]
    verbose = False
    graphics_on = False

    total_work = (num_state_reps * num_emission_reps *
                  2 * num_gamma_init_reps * len(num_blocks))

    work = 0
    for state_rep in range(num_state_reps):
        print 'State repetition %d' % state_rep

        # Generate HMM states
        while True:
            model = HMM([('Start', (1,),          (1.0,)),
                         (1,       (1,2,3),       (0.98, 0.02, 0.0)),
                         (2,       (1,2,3),       (0.02, 0.95,  0.03)),
                         (3,       (1,2,3,'End'), (0.03,  0.03,  0.93, 0.01))],
                    emission_spec)
            model.simulate()
            num_data = len(model.state_vec)
            if num_data < 5000 and num_data > 100: break

        counts = {}
        for state in model.state_vec:
            if not state in counts:
                counts[state] = 0
            counts[state] += 1
        if verbose: print 'Counts: %s' % str(counts)

        # Generate shuffled indices for repeatable shuffling
        shuffling = np.arange(num_data)
        np.random.shuffle(shuffling)
        
        for emission_rep in range(num_emission_reps):
            if verbose: print 'Emission repetition %d' % emission_rep
            model.emit()

            for shuffled in [False, True]:
                if verbose: print 'Shuffling HMM run: %s' % str(shuffled)
                states = np.array(model.state_vec)
                emissions = np.array(model.emission_vec)
                if shuffled:
                    states = states[shuffling]
                    emissions = emissions[shuffling]
                
                for num_block in num_blocks:
                    if verbose: print 'Blocks: %d' % num_block

                    blocks = np.array_split(np.arange(num_data), num_block)
                    
                    for gamma_rep in range(num_gamma_init_reps):
                        if verbose: print 'Initial gamma seed: %d' % gamma_rep

                        init_gamma = np.array(states) - 1

                        run_id += 1
                        this_run = {}

                        this_run['num data'] = num_data
                        this_run['state rep'] = state_rep
                        this_run['emission rep'] = emission_rep
                        this_run['shuffled'] = shuffled
                        this_run['blocks'] = num_block
                        this_run['gamma init rep'] = gamma_rep

                        start_time = time.clock()
                        results = em(emissions,
                                     dists,
                                     blocks = blocks,
                                     gamma_seed = gamma_rep,
                                     init_gamma = init_gamma,
                                     count_restart = 0.0)
                        pi = results['pi']
                        dists = results['dists']
                        reps = results['reps']
                        conv = results['converged']
                        run_time = time.clock() - start_time
                        this_run['run time'] = run_time
                        this_run['reps'] = reps

                        conv_status = conv and 'converged' or 'not converged'
                        this_run['convergence'] = conv_status

                        print 'Reps: %d (%s)' % (reps, conv_status)
#.........这里部分代码省略.........
开发者ID:othercriteria,项目名称:blocked_inference,代码行数:103,代码来源:test.py


注:本文中的hmm.HMM.emit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。